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Abstract—With the popularity of today’s usability-oriented
designs, dubbed Zero Configuration or ZeroConf, unclear are
the security implications of these automatic service discovery,
“plug-and-play” techniques. In this paper, we report the first
systematic study on this issue, focusing on the security features
of the systems related to Apple, the major proponent of
ZeroConf techniques. Our research brings to light a disturb-
ing lack of security consideration in these systems’ designs:
major ZeroConf frameworks on the Apple platforms, includ-
ing the Core Bluetooth Framework, Multipeer Connectivity
and Bonjour, are mostly unprotected and popular apps and
system services, such as Tencent QQ, Apple Handoff, printer
discovery and AirDrop, turn out to be completely vulnerable to
an impersonation or Man-in-the-Middle (MitM) attack, even
though attempts have been made to protect them against such
threats. The consequences are serious, allowing a malicious
device to steal the user’s SMS messages, email notifications,
documents to be printed out or transferred to another de-
vice. Most importantly, our study highlights the fundamental
security challenges underlying ZeroConf techniques: in the
absence of any pre-configured secret across different devices,
authentication has to rely on Apple-issued public-key certificate,
which however cannot be properly verified due to the difficulty
in finding a unique, nonsensitive and widely known identity of a
human user to bind her to her certificate. To address this issue,
we developed a suite of new techniques, including a conflict
detection approach and a biometric technique that enables the
user to speak out her certificate through 6 distinct, rare but
pronounceable words to let those who know her voice verify
her certificate. We performed a security analysis on the new
protection and evaluated its usability and effectiveness using
two user studies involving 60 participants. Our research shows
that the new protection fits well with the existing ZeroConf
systems such as AirDrop. It is well received by users and
also providing effective defense even against recently proposed
speech synthesis attacks.

I. INTRODUCTION

With the proliferation of portable computing systems such

as tablet, smartphone, Internet of Things (IoT), etc., ordinary

users are facing the increasing burden to properly configure

those devices, enabling them to work together. In response

to this utility challenge, major device manufacturers and

software vendors (e.g., Apple, Microsoft, Hewlett-Packard)

∗The two lead authors are ordered alphabetically.

tend to build their systems in a “plug-and-play” fashion,

using techniques dubbed zero-configuration (ZeroConf ). For

example, the AirDrop service on iPhone, once activated,

automatically detects another Apple device nearby running

the service to transfer documents. Such ZeroConf services

are characterized by automatic IP selection, host name

resolving and target service discovery. Prominent examples

include Apple’s Bonjour [3], and the Link-Local Multicast

Name Resolution (LLMNR) and Simple Service Discovery

protocols (SSDP) built into Windows, etc. In addition to those

working on the IP network, similar techniques are developed

for automatic service discovery on other channels, Bluetooth

in particular [29]. The underlying idea of minimizing user

involvements in system setup further influences security

designs, in which less intrusive solutions such as certificate-

based authentication are preferred to those requiring manual

configuration, like QR code scan for secret sharing, an

approach considered to be inconvenient [40].

Challenges and findings. However, when the design pendu-

lum swings towards usability, concerns may arise whether

the system has been adequately protected. Indeed, even

though ZeroConf systems are supposed to be deployed in a

friendly, collaborative environment, in the real world, they

are often operating in the presence of untrusted parties at

public locations such as airport, hotel etc. To understand

whether the protection those systems receive is commensurate

with the threats they are facing, we performed a security

analysis on popular ZeroConf systems on the Apple platforms

(iOS, Mac OS X). We focus on Apple because it is a main

advocate of ZeroConf techniques and also known for its

rigorous security control, mostly based upon its public-key

infrastructure in which Apple-signed certificates can be used

to secure communication. In our study, we inspected popular

apps and system services, in an attempt to understand whether

they are properly guarded against the realistic adversary in

the environment they are supposed to run.

The study brought to light surprising lack of protection in

even high-profile ZeroConf services and apps (Section III):

security measures are either nonexistent there or incorrectly
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designed and implemented. More specifically, service discov-

ery on the Bluetooth Low Energy (BLE) channel provided by

Apple is typically utilized by apps in an insecure way, leaving

the door widely open to a man-in-the-middle (MitM) attack.

Even for Handoff, Apple’s system service, which securely

links one’s Mac laptop (running OS X) to her iPhone, all iOS

services advertised through the BLE channel on the phone

are found to be exposed to an unauthorized app (without

system privilege) on the laptop, disclosing sensitive user

data such as all iOS notifications (SMS messages, emails,

instant messages and so on) from Apple Notification Center

Service (ANCS). Over the wireless channel, the discovery

mechanisms of popular apps like QQ and Filedrop turn out

to be exploitable, even when attempts are made to protect

their communication.

Also interesting are the security risks we discovered in

Bonjour, Apple’s service discovery protocol, which has been

utilized in security-sensitive Apple services without proper

safeguard in place. As an example, our research shows that

this problem allows the adversary in a local network (e.g., a

compromised Mac desktop) to silently intercept the document

the victim sends to a printer, an attack completely invisible

to the victim from her print dialog. Most importantly, we

found that the AirDrop service on iOS and OS X contains a

subtle design flaw: although the service uses TLS to deliver

a file between two individuals, the device certificates used

in the communication cannot be properly verified, as the

binary content they include (e.g., Apple ID) cannot be easily

linked to the identifiable information of the persons in the

communication (name, appearance, voice, etc.). To establish

such a link, upon receiving the file recipient’s certificate,

AirDrop tries to retrieve her photo from the sender’s contacts

on his device when possible, according to the hash value

of the recipient’s email registered in her Apple account (a

unique identifier from Apple’s perspective) that comes with

her certificate. This attempt is often futile given the fact

that people tend to have multiple emails and their friends or

colleagues may not have their Apple-related emails in the

contacts. As a result, a MitM attack can often succeed even

in the presence of such TLS protection.

Such vulnerabilities are pervasive in Apple ZeroConf: we

analyzed 67 popular Apple apps and services using ZeroConf

(e.g. Bonjour, BLE service discovery, etc.), including Airdrop,

QQ and Filedrop. The vast majority of them (60 out of 67)

are found to be unprotected and vulnerable to the MitM

threat. The consequences of the attack are serious, causing

the leakage of highly sensitive user information, such as

messages, emails, files and more. We reported our findings

to Apple and related app developers, who acknowledged that

what we found are real and significant. As an example for

the impact of the study, based upon our report, Apple has

removed the supports for transferring iOS notifications to

Mac OS after iOS 8.3 and OS X 10.10.4. Demos of our

attacks are posted online [22].

The most important finding of our study is that protecting

real-world ZeroConf services can be much more complicated

than it appears to be. Even when Apple or app developers

take security seriously, often there is little they can do

without resorting to manual configuration of shared secrets,

particularly in the absence of the iCloud support (which is

not supposed to be present for the services like AirDrop

that are designed to work in a Wi-Fi ad-hoc network

without going through the Internet). Fundamentally, unlike

the TLS certificate of a website, which is linked to the site

through its domain name, the certificate used in cross-device

communication often cannot be trivially connected to its

owner (note that device IDs are generated dynamically and

can be forged): for example, in AirDrop, often one cannot tell

whether a certificate indeed belongs to the person he wants to

talk to, as what he knows about the person (e.g., her company

email address) can be very different from what is on her

certificate (e.g., the hash value of her Apple account email)

and even what she uploads to her Apple account. Actually,

as evidence for the challenge in protecting ZeroConf, QQ

chooses to roll back to manually sharing secrets for protecting

its file transfer and Apple still has not found any effective

solution to our attack on AirDrop, even after we informed

them of the threat months ago.

Securing ZeroConf on Apple. Given the strong demand for

ZeroConf techniques, it is of critical importance to come

up with usable solutions to address their security risks. In

our research, we made a first step toward this end. For

service discovery in an environment where all devices can

always receive others’ service requests (e.g., in the case

of Apple Airdrop), we designed a simple mechanism that

binds the service name a party announces to its certificate

only when no other party claims the same service name,

since such a conflict is a necessary condition for a MitM

attack (Section IV-A). A more generic solution is a new

technique that binds an Apple account certificate to its human

owner. Underlying our approach is an idea called speak out
your certificate (SPYC), which allows anyone who knows

the owner’s voice to verify her certificate, based upon the

intuition that the owner will not speak out the adversary’s

Apple certificate to give the adversary the opportunity to

impersonate her. Key to this technique is a design that maps

a certificate to 6 unique, unambiguous and pronounceable

rare or fake words whose voice samples are hard to collect

in daily life. One only needs to say those words once (for her

certificate), called SPYC vouch, during her first authentication

with another party and can then send the voice recording

together with the certificate when interacting with other

parties (e.g., in a TLS connection). For each human contact,

the recipient of a certificate only needs to verify the sender’s

voice once to bind her to her certificate. The whole SPYC

mechanism is carefully designed to ensure that the vouch is

difficult to forge and easy to use. Particularly, we show that
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our technique is resilient to known speech synthesis attacks

(Section IV-B).

We analyzed the security design of SPYC and further

implemented it within the AirDrop services on iOS and OS X.

The usability and security of the mechanism was evaluated

through two human subject studies with 60 participants. The

studies show that identification of a speaker from her SPYC

vouch is reliable, resilient to vouch forging and the technique

is considered more convenient than joint configuration of a

shared secret across devices, e.g., scanning QR code (in the

case of AirDrop, one may have to walk about 200 feet to

reach her colleague staying in a different office or even on

a different floor). We further evaluated the performance of

our implementations on two Macbook Pro (Mid 2014 model)

and two iPhone 5, which was found to be very efficient,

incurring a negligible delay.

Contributions. The contributions of the paper are outlined

as follows:

• New findings and new insights. We conducted the first study

on the security protection of Apple ZeroConf, discovering

serious design and implementation flaws in high-profile

Apple services (e.g., Handoff, automatic printer discovery

and AirDrop) and popular apps (e.g., QQ). Our research

shows that those services and apps can be easily exploited

in an information stealing or MitM attack, putting sensitive

user data in danger. Highlighted in our study is the insight

that certificate verification can be difficult in cross-device

communication, particularly for linking a human subject’s

certificate to the information that others use to identify her.

• New techniques. We developed a suite of innovative

techniques to address the challenges in certificate verification

for ZeroConf, including a “no-conflict” approach and a voice

based certificate vouch. Particularly, our SPYC design allows

one to speak 6 words one time to authenticate the whole

certificate to others, which is convenient for establishing a

secure channel in ad-hoc communication and robust against

the attacks on voice authentication.

• Implementation and evaluation. We implemented our

designs on the Apple platforms and evaluated them through

security analysis, human subject studies and performance

tests. Our study shows that the new techniques work

effectively in practice, enhancing security protection and

largely preserving the usability of ZeroConf systems.

II. BACKGROUND

The concept of zero configuration is first defined over the

IP network [28], for the purpose of setting up a network

automatically without configuration of the services like

DHCP and DNS. To this end, techniques are developed to self-

assign IP addresses to networked devices, resolve conflicts,

announce a host name and its IP address through a multicast,

e.g., using the Multicast Domain Name System (mDNS),

which updates each host’s DNS cache, and automatically

discover services of interest broadcasted by other devices and

let the user choose through service browsing. Later the idea

of automatic service discovery has been applied to bootstrap

the devices running on other channels. Below, we present

two examples to show how ZeroConf works.

BLE service discovery. Bluetooth low energy (BLE) is a

wireless technology based on the Bluetooth 4.0 specifications

for new applications in the healthcare and home entertainment.

Different from the classic Bluetooth, BLE reduces power con-

sumption and is featured by its convenient configuration. The

technique has been incorporated into iOS and OS X as part of

their Core Bluetooth frameworks. The BLE communication

involves two main actors: peripheral that provides a service

and central that discovers and uses the service. Each of such

actors is identified by a universally unique identifier (UUID).

Further, on the peripheral, individual services running also

have their own UUIDs. Here a service is described by a set

of characteristics, e.g., whether it is readable, writable or

both. During the BLE operation, each peripheral advertises

its services through its own UUID. Once it is discovered by

a central, a connection between the two devices reveals the

services on the peripheral and their characteristics.

To get services from the peripheral, the two devices often

need to pair, a process that establishes a link-layer secret

key between them. Traditionally, this is considered to be

a configuration step, at which the user is often required to

manually enter a PIN. BLE comes with the Secure Simple

Pairing model (SSP) that makes such configuration easier

or even removes the whole step. Specifically, it provides

four pairing mechanisms: Just Works, Numeric Comparison,

Passkey Entry and Out of Band (OOB). Among them,

Numeric Comparison requires the user to compare two

numbers displayed on two devices and confirm that they

are identical and Passkey Entry is the legacy approach,

asking the user to type a 6-digit PIN. Just Works and OOB,

however, are ZeroConf approaches: the former enables a

central to directly pair with a peripheral (assuming that the

UUID is already known) and the latter requires additional

information from different out-of-band mechanisms: e.g.,

authentication through near-field communication (NFC) or

Apple’s certificates. Apple’s Core Bluetooth framework

further hides the details of the pairing from both users

and developers, which by default takes care of the whole

pairing process easing both usage and development burdens

(section III-A).

IP service discovery. A prominent example of ZeroConf on

the IP network is Apple’s Bonjour, which utilizes mDNS

to publish and discover services in local-area network and

Wi-Fi direct network. As mentioned earlier, mDNS updates

the host-name/IP mapping through broadcast. The design of

Bonjour further enables automatic assignment of IP addresses

and host names, and direct service access through a service

name: all the user needs to do is to choose from a list the

service she wants to use.
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Like other Internet services, a Bonjour service carries a

name in the format of ServiceType. TransportProtocol.

DomainName, where ServiceType is an identifier for the

service type such as airdrop, TransportProtocol is the

transport protocol like tcp and DomainName indicates

the domain in which the service is provided, which is often

a host name and when it is set to local, the host needs to be

found through a broadcast across the local network. Such a

broadcast is also used to register a service and create mDNS

records. Further, a service instance (e.g., the airdrop service

launched by the user) also has an instance name, with a

unique identifier preceding the whole service name, e.g.,

9c5e3d2. airdrop. tcp.local.

Bonjour publishes services through mDNS record packages.

To register a service, three mDNS records need to be

announced: a pointer (PTR) record, a service (SRV) record,

and a text (TXT) record. The PTR record includes the name of

a specific service instance, e.g., 9c5e3d2. airdrop. tcp.local,

which enables service discovery from other devices to map

the service type to instance names. The SRV record further

maps the instance name to the information the client needs to

actually use the service, including the service’s host name and

port. The TXT record contains some additional information

about the service instance, which could be left empty. When

publishing (registering) a service instance, a host should

announce at least a PTR record (from the service type to its

instance name) and a SRV record (from the instance name

to the host name).

1. PTR request Anyone provides service of type _airdrop._tcp?

2. PTR response service instance: 9c5e3d2._airdrop._tcp.local

3. SRV request where is 9c5e3d2._airdrop._tcp.local?

4. SRV response It is on Jeffs-iPhone.local : 8770

5. AAAA request What’s the ip address of Jeffs-iPhone.local?

6. AAAA response Its ip address is fe80::xxxx

Discovery

Resolution

Figure 1: Bonjour Service Discovery and Host Resolution

To discover a service of interest, a Bonjour client first

broadcasts PTR requests to look for a service type, e.g.,

airdrop. tcp. The service instances providing this service

type then responds with their instance names (through PTR

response). These names are further resolved by the client

to the IP address of the host running the instance (instance
server): more specifically, it sends out an SRV request and the

instance server responds with an SRV response that provides

its host name and port number; the host name is further

resolved to the server’s IPv4 or IPv6 address through A or

AAAA mDNS queries. This resolution process takes places

each time the instance name is used to find the service’s

current address and port number. Apple recommends that the

service instance name discovered (e.g., “HP Printer [928FE5]”

of a HP printer) is saved, since it is relatively stable, unlike

host names, IP addresses, etc. that change frequently. The

process of Bonjour service discovery is illustrated in Figure 1.

Adversary model. We assume that the adversary has already

infected a device with malware, in an attempt to utilize the

device to collect sensitive information from other uninfected

devices. Such an adversary could not only listen on the

communication channel (e.g., BLE, local-area network, Wi-

Fi direct), but also actively send out messages to impersonate

a legitimate and uninfected device. In Section III, we

demonstrate that such an adversary is capable of performing

a MitM attack, intercepting data transferred between other

uninfected devices nearby, though the infected device is not

the right recipient of data. On the other hand, we do not

consider a targeted attack on the owner of an uninfected

device, in which the adversary studies the owner’s behavior

and background, and can even utilize social engineering to

collect information about her (e.g., cheating her into speaking

out specific words).

III. UNDERSTANDING APPLE ZEROCONF

In our research, we conducted a security analysis on

popular ZeroConf Apple services and apps, in an attempt to

understand whether they are properly protected, and if not,

what technical hurdle needs to overcome to put the protection

in place. The study reveals that most Apple ZeroConf systems,

including Handoff, printer discovery, AirDrop and high-

profile apps, are unguarded, subject to various MitM or data-

stealing attacks. Note that the discoveries were made through

an in-depth analysis on how those systems work, which

typically has not been reported by Apple and corresponding

app developers. Such technical details were uncovered in

our research through inspecting communication traffic and

binary code of the apps or system libraries involved.

A. Breaking Bluetooth ZeroConf

Apple’s Core Bluetooth framework allows iOS and Mac

apps to automatically discover and pair with other BLE

devices. This framework is an abstraction of the Bluetooth

4.0 specification which hides BLE low-level details from

developers, e.g., which pairing mode to choose, easing the

development process. Its default pairing mechanism (an

abstraction of Just Works) is also designed to reduce

users’ burden, avoiding the step of entering PINs on different

devices. Hence, the framework has been adopted by many

popular apps and services to improve their usability. However,

our study shows that its service discovery and pairing

mechanisms are often problematic, making many Apple apps

vulnerable to our MitM attacks (Section III-D). Here we

elaborate two examples.

Insecure pairing. We found that the default mode of

Apple’s Core Bluetooth framework (working through Just
Works) does not authenticate the central (the client) and the

peripheral (the server) on the link layer, and therefore requires

application-layer authentication. However, such protection,

as revealed in our research, typically has not been integrated
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into apps, leaving them mostly unguarded. Also, the usability-

oriented design of the framework also allows automatic

connection to a UUID without reporting any conflict (the

same service UUID claimed by multiple devices), further

making an attack on the channel hard to detect. As an

example, let us look at Scribe [20], a free app that transfers

a copied item from Mac to iPhone, which we found is

vulnerable to a MitM attack.
During the data transfer, the Scribe app on iOS acts as

a peripheral (the server) and the one on OS X is a BLE

central (the client). What the adversary wants to do is to

become a central for the iOS app and a peripheral for the

OS X app. This is actually a little bit tricker than it appears

to be, depending on which app runs first. Specifically, if the

user activates the OS X Scribe first, the attack app can open

a service with the iOS peripheral’s service UUID, cheating

the Mac app into connecting to it before the real iOS service

is announced. Once the service shows up, the attacker can

connect it to become the man in the middle. In our research,

we found that this attack always succeeds when legitimate

apps are launched in that order.
When the user runs the iOS Scribe peripheral before the

OS X central, things become a bit complicated. In this

case, the attacker can still connect to the peripheral as a

client. However, when the legitimate central on the Mac tries

to discover services, it will find two peripherals with the

same service UUIDs. Once this happens, the BLE client

(the central) randomly picks up one of the two services to

connect. Therefore, the MitM attack stands a 50% of chance

to succeed. Also interestingly, the name of the central as

shown on the peripheral is given by the client device, which

the attacker can take advantage of to mislead the user with

the legitimate device’s name.

Attacking Handoff. Unlike Just Works, the Out-Of-

Band mechanism allows ZeroConf devices to authenticate

each other over the BLE channel. A prominent example is

Apple Handoff, a service that lets iOS and OS X synchronize

data through BLE without configuration. Pairing between the

devices happens through OOB: when the user logs in her

iCloud account on her Mac and iPhone, the UUIDs of the

devices and credentials are exchanged through her account,

to ensure that only authorized devices are paired.
The problem is that data synchronization should only

happen between specific peripheral/central apps, while the

Apple’s ZeroConf design does not provide authentication at

the app level. As a result, any advertised BLE service on

the iPhone is completely exposed to any BLE capable app

on the Mac. Specifically, in our research, we successfully

exploited Apple Notification Center Service on the iPhone

using a sandboxed Mac app. In the attack, as soon as a

Bluetooth connection is established between the Mac and the

iPhone (which happens when the user launches a Handoff

process, with the Handoff setting on and her iCloud account

logged-in), the attack app calls discoverServices: to

discover the advertised ANCS service on the phone and

discoverCharacteristics:forService: to find

out its characteristics, particularly its notification source

and data source. By registering with them, the attacker is

informed whenever a notification comes into the iPhone from

the former and then acquires the notification from the latter.

In this way, we found that the sandboxed app, with only the

Bluetooth entitlement, stole all notifications from the iPhone,

including SMS, emails, Instant Messages and others. Our

attack app was successfully published on Apple’s Mac App

Store. A demo is online [22].

Our attack was implemented on iOS 8.3, OS X 10.10.3 and

10.10.4, the most up-to-date versions when we discovered

the problem. After reporting to Apple our findings, they

decided to discontinue the support for transferring iOS

notifications to Mac OS in the later version (posterior to

10.10.4), only allowing the data synchronization between

iPhone and Apple Watch. We further discovered that other

third-party cross platform services over BLE tend to have the

same problem. Particularly, Pushbullet, a popular cross-device

synchronization app, was found to be equally vulnerable to

the attack.

B. Exploiting File-Sharing Apps

An important support provided by ZeroConf techniques is

to enable file sharing between devices (e.g., Macbook and

iPhone) across an ad-hoc network (local WiFi network or

peer-to-peer WiFi direct connections), when the Internet is not

available or considered to be less economic for the amount of

data to be transferred. Such a capability is offered by popular

apps such as Tencent QQ [18], FileDrop [6], etc. and Apple

system services like AirDrop. These apps or services perform

automatic service advertisement, discovery and target host

resolution, completely eliminating the burden of manual

configuration. However, just like the ZeroConf systems on

BLE, such file-sharing techniques are inadequately protected

and difficult to be secured. Below, we elaborate our study

on popular ZeroConf apps. Our findings about the AirDrop

service is reported in Section III-C.

Exploiting MC Framework and QQ. Tencent QQ is an

extremely popular instant messaging app, with 829 million

active accounts [23]. Its iOS version features a capability that

allows an Apple device to share files with other Apple devices

nearby. This capability is built on top of an Apple ZeroConf

framework called Multipeer Connectivity (MC) [2], which

wraps Bonjour with additional supports for service discovery

and file transfer between devices across infrastructure Wi-

Fi networks, peer-to-peer Wi-Fi, and Bluetooth personal

area networks. Note that Bonjour is not a secure ZeroConf

mechanism, which we elaborate in Section III-C. Here our

focus is on the security issues within the MC wrapper and

the app using the framework.

Apps built on top of the MC framework uses the framework

to discover services and establish connections. The technical
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details about how the framework works, however, have

never been public by Apple. In our research, we looked

into the framework through analyzing the binary code of

its libraries (MultipeerConnectivity.framework)

and the traffic traces. Here is what we found. In the

case of file sharing, typically the receiver device runs

an MC interface MCNearbyServiceAdvertiser to

advertise its peerID and other information, which is

picked up by the sender running another MC interface

MCBrowserViewController. The peerID, acting as

an identifier of an app using this framework, is an object with

a few properties, e.g., a public displayName (the user’s

customized name in the app) and a private uniqueID (a

random string). The private property uniqueID, generated

by MC, is transparent to developers. The sender’s interface

MCBrowserViewController provided by MC, displays

displayName of all discovered peerIDs for the sender

user to select from. What we found from the MC libraries

is that for each new receiver (i.e., the peer) discovered,

the MC interface (MCBrowserViewController) checks

whether its peerID has been seen before, i.e., whether its

uniqueID matches that of a known peer. If it is matched,

the MC interface thinks the peer is an existing one. However,

it still updates the peer’s IP address it saved, because it thinks

the peer might legitimately change its IP.

In legitimate scenario, even if different peerIDs are

created with a same displayName, their uniqueIDs

are different. The problem here is that an attack device

can also browse and acquire the advertised peerID (of

a victim receiver) and its integral properties, and then

launches a service using exactly the same peerID object,

to impersonate the receiver to the sender. Further, the MC

interface (MCBrowserViewController) on the sender

side considers the discovered peerID from the attacker as

an update to the existing peerID from the victim receiver.

Consequently, it will map this peerID to the attacker’s IP

address. This enables a successful MitM attack in our study.

We reported the problem to Apple and are working with

them to address it.

In the case of QQ, our analysis of the app

shows that it takes a different approach to support

service discovery: instead of advertising peerID, a

QQ receiver announces its service type qq-qlink
through MCNearbyServiceAdvertiser, together with

a discoveryInfo parameter. Within discoveryInfo
is one’s QQ ID, which is unique across all QQ users. On

the sender side, an API [MCNearbyServiceBrowser
startBrowsingForPeers] is invoked to discover all

the devices with the type qq-qlink, from which their

individual QQ IDs are extracted from discoveryInfo
and used to retrieve the avatar (a graphic profile) of the user

on the receiver side. All such avatars are then displayed

to the owner of the sender for choosing the right party

to communicate with. Behind the scene, the host and IP

resolution is handled by the MC framework: when browsing

the qq-qlink service, the sender automatically records the

receiver’s host name, port and resolves its IP automatically,

a process transparent to both the app developers and users.

Browser Advertiser

1.Advertise  
   QQ IDVictim_Receiver

3.send files

4.send files

Victim Receiver (Advertiser) Victim Sender (Browser)

Attacker

1.Advertis
   QQ IDVict

s

er

2.Advertise  
   QQ IDVictim_Receiver

Figure 2: Attack on QQ

This treatment turns out to be equally problematic. Specif-

ically, here the QQ ID serves as a unique identifier for

the sender to find the right receiver. However, there is no

protection in place to bind the ID to the receiver or the

sender to ensure that the person there is indeed the owner

of the ID. In our research, we implemented an attack, as

illustrated in Figure 2, in which an attack device advertises

the receiver’s QQ ID and waits for the connection from

the sender. Our research shows that in the presence of two

receivers with the same QQ ID, the sender randomly chooses

one to connect. Therefore, with a 50% of chance, the attacker

can successfully impersonate the legitimate receiver to the

sender. Once this happens, the attacker can directly connect

to the receiver as the sender and become a man in the middle

to intercept the file transferred between the two parties. A

demo of the attack is posted online [22]. Our research further

shows that many other apps utilizing the MC framework are

also unprotected (Section III-D).
We performed the attack on iOS 8.4 and QQ v5.4.0.454,

the latest versions when we reported the problem to Tencent

in March, 2015. They acknowledged the seriousness of the

problem we discovered. With our help, they fixed the problem

in the latest version of QQ on iOS, in which they now require

the receiver to scan a QR code from sender’s screen, a shared

secret before actual file transfer begins. This essentially rolls

back from the ZeroConf feature of the app and resorts to

exchange of secret, an approach considered to be inconvenient

by mobile users [40], [42].

Breaking Filedrop. Unlike QQ that takes advantage of

Apple’s ZeroConf framework, some apps implement their

own ZeroConf capabilities, which become necessary when

file transfer needs to happen across platforms and therefore

cannot solely rely on Apple’s service. A prominent example

is Filedrop, a popular paid app designed to quickly share

documents between iOS, Mac, Android and Windows devices

in a Wi-Fi ad-hoc network. Filedrop has its own service

publishing, discovery and target resolving and other mecha-

nisms expected from a ZeroConf system. On top of that, it

provides cryptographic protection for the file-transfer process.

However, our research shows that despite such effort, the app

is still vulnerable to a MiTM attack, which highlights the
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challenge in protecting an automatic, self-configured service

in the absence of pre-shared secret.

Again, there is no publicly available information about

how the app works. We studied its operations by analyzing its

binary code and traffic traces. What we found is summarized

as follows. Our analysis shows that all the Filedrop apps

within the Wi-Fi transmission range form an ad-hoc peer-

to-peer network and discover each other and exchange files

through a public-key based secure channel. Specifically, each

Filedrop app (FiledropA) probes all IP addresses within the

local network using TCP requests directed toward port 52734,

on which the app is listening. Once connected to another

app (FiledropB), the sender transmits its randomly-generated

ID deviceid a, user-defined name devicename a, an Elliptic

Curve Cryptography (ECC) public key (Keypub a) and a set

of other meta data. The recipient FiledropB then responds

with its own set of parameters, deviceid b, devicename b and

Keypub b. After that they generate a pair of secrets ra and rb
independently and exchange the secrets using the other party’s

public key. Using the secrets, both Filedrop apps come up

with a common session key Keysession. Then they display

each other’s device name in the list of available devices

nearby. Once the user of one device selects the other to drop a

file, a secure channel is then established using Keysession for

transferring the file. This process (service discovery, address

resolving and secure channel establishment) is completely

automatic, without any pre-configuration requirement.

With all such protection in place, the mechanism, however,

is still weak. Fundamentally, it is the user who decides on

which device to connect, based upon its name devicename b.

The problem is that an attack device can easily take the

name of any other device without being noticed. Specifically,

in the attack, a malicious device runs Filedropmal using

the target device’s ID deviceid b and name devicename b.

Our analysis shows that once Filedropmal probes FiledropA
before FiledropB does, FiledropA keeps record of deviceid b

and devicename b and will not connect to any other device

with the same ID and name. As a result, FiledropB cannot

talk to FiledropA, and whenever devicename b is selected by

the user, always Filedropmal will be connected.

As we can see here, the problem comes from the lack

of binding between the public key and its device or the

device owner. Apparently, this can be addressed using a

public key certificate. It turns out, however, that certifying

a public key for a device or a user is complicated: every

piece of identifiable information can be changed, including

the device name, for resolving conflicts on the fly, and the

user’s identity information may not be known to the party she

wants to communicate with. As a result, it becomes extremely

difficult to have a trusted third party issue a certificate to tie

a public key to any device related information or the user. In

Section III-C we show that AirDrop indeed utilizes Apple’s

public key infrastructure but still fails to protect the service

from a MitM attack.

C. Cracking Bonjour Protection

As mentioned earlier, Bonjour is a major ZeroConf

mechanism developed by Apple. It supports automatic service

discovery and host-name/IP resolution (Section II): for a short

summary, in the discovery step, the Bonjour client broadcasts

an mDNS query of type PTR to discover services of specific

types, e.g., printer. tcp and the server (e.g., a HP printer)

responds with a service instance name such as “HP Printer

[928FE5]”; in the resolution step, the client broadcasts mDNS

queries of type SRV and A with the instance name and the

server replies with the host name, e.g., LaserJet.local, and

its IP address.

A problem for this fully automated mechanism is that again,

little protection is in place to ensure that parties involved

properly authenticate each other. With this weakness, the

mechanism is still used in a not-fully-trusted environment, in

the absence of additional security measures. Actually, even

when people want to protect it, authentication on top of

Bonjour, without pre-configuring shared secret, is hard, as

we found in our research. Here, we elaborate our findings

through two examples, which attack popular Bonjour-capable

systems: automatic printer discovery and AirDrop.

Misleading printer discovery. Today, all major printer

vendors support Bonjour-based automatic printer discovery.

More specifically, whenever the user searches her local

network for printers, her Mac runs Bonjour to find printer

service instances and let the user choose. A selected printer

has its service instance name (e.g., “HP Printer [928FE5]”)

saved on the Mac, which enables the user to access the printer

without going through the service discovery step again. On

the other hand, each time the user prints through the service

instance name, the target printer’s host name and IP address

need to be resolved, using the printer’s service instance

name. In our research, we confirmed that this process can be

manipulated to steal the document the user intends to print

out.

The attack happens when a malicious host (e.g., a compro-

mised Mac) in the network broadcasts an mDNS response

with an existing printer’s instance name (e.g., “HP Printer

[928FE5]”∗). Note that such a response can be completely

fake, not responding to any mDNS query. Nevertheless, each

device (e.g., printer) observes the response automatically

caches it (the mapping between a service type to a service

instance) and when a conflict is discovered (i.e., the recipient

device finds that the response carries its own instance name),

the receiver automatically resolves the conflict by changing

its own instance name (e.g., to “HP Printer [928FE5] (2)”).

The problem is that the Mac keeping the printer’s instance

name does not know about that. When the Mac uses the

printer, the mDNS request sent out for resolving the printer’s

host name and IP will not be responded by the printer, since

the instance name on the request no longer belongs to it. The

∗Typically, the service instance name includes a random string.
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malicious host, however, will reply with its IP. As a result,

the user’s document will be sent to the malicious host, which

can forward the document to the original printer, silently

serving as a man in the middle.

We implemented the attack on a real-world organizational

network, using a MacBook Pro (2.6 GHz Intel i5, 8 GB

memory, OS X 10.10.4) as the attack device. Our approach

successfully intercepted documents to be printed out on the

target printer. Note that the problem is not limited to printer

discovery: actually most apps and systems utilize Bonjour do

not have protection at all and therefore are equally vulnerable

to such a MitM attack. An example is the popular PhotoSync

app, whose communication between a Mac and an iPhone

(for synchronizing photos) is exploited by our MitM attack

for stealing the photos exchanged across the devices.

Hacking AirDrop. A unique feature of Bonjour is that all

the identifiers of a device using the mechanism, including its

service instance name, host name, IP address, are generated

dynamically and can be changed at any time. This feature

enables automatic configuration of an ad-hoc network through

which devices easily discovers each other and establishes

communication channels among them. On the other hand, it

also makes authentication of the devices involved difficult. A

prominent example here is Apple AirDrop, an ad-hoc service

that supports short-range exchange of documents between

OS X and iOS devices. The service is built on top of Bonjour,

enhancing the ZeroConf mechanism with TLS-based security

protection. Below, we introduce how the service works.

We revealed the whole AirDrop process through reverse

engineering and inspecting the binary code of sharingd
(at /usr/libexec/sharingd), a system component for Airdrop. It

turns out that, after the Bonjour discovery and resolving steps

(using a PTR for the service type airdrop. tcp.local), the

AirDrop sender running on iOS or OS X discovers the service

instance name, IP and port of another device supporting

AirDrop (the server). Then, the sender establishes a TLS

connection with the server to collect its device name (a name

for the user to recognize the party she wants to talk to, such

as Jeff’s iPhone), Apple account information, etc. The

name and the information are used to build up a list of

discovered devices from which the user chooses one to drop

documents. Such a file transfer happens through an HTTPS,

with the AirDrop client (i.e., sender) connecting to the server

through the URLs such as https://Jeffs-iPhone.local/Ask and

https://Jeffs-iPhone.local/Upload, where Jeffs-iPhone.local is

the server’s host name. Once the file transfer is complete,

the server sends back an HTTP status code 200 to confirm

the success of the transfer.

Figure 3: Apple certificate issued to an Apple account

With the TLS protection, it is less clear how the sender

verifies the server’s TLS certificate, which belongs to the

device owner’s Apple account (Apple ID). Since none of

the server device’s identifiers (service instance name, device

name, IP, etc.) is meant for a long-term use, they can be

changed on the fly and therefore cannot be bound to the

user’s TLS certificate. Unlike a website, whose certificate uses

the site’s host name (e.g., apple.com) as its common name
that needs to be checked during an HTTPS connection, the

Apple account of one individual does not have such identity

information that other people can easily verify. Actually, as

we find out, what is bound to one’s Apple certificate (used for

the TLS connection) is actually a random string prefixed with

com.apple.idms.appleid.prd (Figure 3), which is supposed

to be related to her Apple ID. This random string is hard

to use by others for a manual check on whether it indeed

belongs to her.

… 
<Common Name:  
   com.apple.idms.appleid 
   .prd.4b3566744353…> 

<Email Hash:  
   bf356a81c429dd77…> 
…

1. Apple signed message 2. Email matched in Contacts 3. Contact Name 
 and Portrait shown in Airdrop

. a atc ed Co tacts
 and Portrait shown in Airdrop

Server 
(Receiver)

Client  (Sender)

Figure 4: The process of checking contacts in Airdrop

Fundamentally, linking a human to her certificate is

complicated, due to the challenge in finding any identifiable

information both well-known (no privacy implication) and

unique: e.g., name can be duplicate; date of birth, social

security number are confidential, which people may not share

lightly with the party they just want to drop a file. What

Apple does, as we discovered in our research, is to bind an

individual’s Apple ID (denoted by an email address) to the

aforementioned random string in her certificate. However, this

binding relation is not public by Apple’s design. Specifically,

through the TLS connection, the server sends to the client

the hash value of its owner’s Apple ID (the email address),

which is signed by Apple together with the random string

on her certificate. The hash value is utilized by the client to

search her contacts: only if it matches a saved email address,

the client identifies who the TLS server indeed is, as the

saved picture of the contact is then displayed to the user.

Otherwise (the email hash is unknown to the client), the

aforementioned binding relation is unknown to the client: the

displayed device name of the server is arbitrarily claimed

by the server in the TLS communication. This process is

illustrated in Figure 4.

In our research, we reveal that Apple’s design is not

secure in practice: oftentimes, Apple users don’t save known

people’s Apple IDs into contacts. Specifically, people might

only save others’ phone numbers, not email addresses. Also,

one person tends to have multiple emails. The chance is that

many of her contacts do not share with her their Apple IDs
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(email addresses). For example, what you know about your

colleagues are most likely their working email addresses.

Indeed, in our measurement study, we checked all 1,230

contacts saved on 9 individuals’ iPhones. It turns out that

only 119 contacts (9.7%) out of 1,230 are saved with their

Apple IDs. Specifically, 240 contacts (19.5%) out of 1,230

are saved with their email addresses (the remaining 1,007

contacts, i.e., 81.9%, only have phone numbers or personal

webpage links) and more than half of these saved email

addresses are not Apple IDs. Actually, Apple apparently

treats the Apple ID as private information and only sends

out its hash value for certificate check. Further, the approach

does not work on those still not included on one’s contact

list, who AirDrop is also supposed to serve.
Given the fact that highly likely this identity check (linking

one’s certificate to her identity known to the user initiating

the AirDrop process) fails in practice, Apple still shows to

the user the list of device names, even when the certificates

involved cannot be bound to any known contacts through

the Apple IDs (email addresses). Once the user chooses a

device (through the device’s name like Jeff’s iPhone),

her documents will be transferred through the AirDrop

mechanism, even when the validity of the server’s certificate

cannot be fully verified.

SRV response: service 9c5e3d2._airdrop._tcp.local 
 is on Attacker-iPhone.local

AAAA response: IP of Jeffs-iPhone.local is fe80::bbbb

Client

Attacker

Server

(a). Attack by faking SRV response

(b). Attack by faking AAAA response

AAAA response:  
IP of Jeffs-iPhone.local is fe80::aaaa

Client

Attacker

Server

SRV response: service 9c5e3d2._airdrop._tcp.local 
 is on Jeffs-iPhone.local 

Figure 5: Attack on Airdrop

Exploiting this weakness, we successfully attacked Air-

Drop in our research. Specifically, the attack happens when

the attack device sends an mDNS packet of type SRV to bind

the service instance name of the real AirDrop server to its

own host name (Figure 5(a)). Note that this mDNS response

can be unicast to the victim, i.e., the AirDrop client (the

party that initiates the AirDrop communication), to avoid

being found out by the server. After that, the TLS connection

(towards the server’s instance name) initiated by the client

will go to the attack device’s host name. Alternatively, the

attacker can send to the AirDrop client an mDNS packet of

type AAAA, binding the server’s host name to the attacker’s

IP address (Figure 5(b)). Again, this packet can be delivered

through a unicast channel, without exposing to the server.

This, again, will cause the TLS request from the client to go

to the attack device. In either case, the attack device finally

impersonates the server to the client, and then connects to the

server to act as a man in the middle. Since the user during

the process has no way to find out whether she is talking

to the right person, she may choose the wrong device on

the list and send her documents to the attacker. A demo is

online at [22]. The problem has been recognized by Apple,

which is working with us to find a solution.

D. Measurement

To find out the scope and magnitude of the security weak-

nesses in ZeroConf systems, we performed a measurement

study, analyzing 61 popular Mac and iOS apps designed

to operate without configurations. Our findings demonstrate

the significance of the issue: a vast majority (88.5%) of the

apps we analyzed turn out to be unprotected at all, even

though the environment they work in cannot be fully trusted.

Examples of such apps and our findings are summarized in

Table I. The complete list is in Table II.

ZeroConf
Channels

Vulnerable/
Sampled

Sensitive Information
Leaked App Examples

BLE 10/13
user name and password

for Mac OS X
Near Lock

MC 24/24
files and photos transferred,

instant message

Bluetooth U,
Photo Transfer,

Airdates

Bonjour 18/22
files, directories and

clipboard synced, documents
printed, instant message

Copybin,
Printer Pro Lite

Homegrown 2/2
remote keyboard input

and files transferred
Remote Mouse,

SHAREit

Table I: Summary of vulnerable Apps

ZeroConf
Channel App

BLE
Near Lock, Tether, MacID, Proximity Lock, Bluetooth Lock,

Bluetooth Lock Pro, Knock, Bluelock, BT Msgr, Sochat

MC

BluetoothPhotoShareExpert, Photo Transfer LITE, Beam It!,
Bluetooth U, Bluetooth Transfer Free, Bluetooth Transfer,
Multipeer, FileTransfer iFamily, ZombieChat,SocialCard,

Wave Off The Grid Chat, HyperConnect, Meshwork, chatty,
WVLT, PeerTy, TABI, PubChat, BluetoothVideoTransfer,
nocknock, LocalTalk, Tabitop, AirDates, ChatUp, Probity

Bonjour

Photo Transfer App, Flowr-Photo Journal, RemoteSnap,
PDF Printer Lite, ClipAgent, Flick, Sync Photos to Storage,

DropCopy, Pasteasy, SyncBook, Mobile Mouse Server,
Print Pro Lite, Air Printer Lite, Remote App Launcher,

Clippy, Air Media Server, Schick, AirBeam, ShutterSnitch,
AirBridge, Photo Sync, copybin

Homegrown Remote Mouse, SHAREit

Table II: Full List of Vulnerable Apps that We Found

Settings. To understand the pervasiveness of the security

weaknesses in ZeroConf apps and their implications, we

searched on Apple’s Mac and iOS App Stores for the apps

using the aforementioned ZeroConf channels, e.g., Bluetooth

low energy (BLE), Multipeer Connectivity (MC), Bonjour

and homegrown ZeroConf. The search was based on a set

of keywords, as illustrated below. On the apps discovered,

we ran Hopper [8] to dissemble those with OS X into

Intel x64 instructions and those with iOS into ARMv7

instructions. Note that before the dissembling operations,

the iOS apps were first decrypted using Clutch [4]. From

the sections objc methname and objc selrefs within the

dissembled code, we utilized a python script to find out
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whether channel-related APIs are called in the code. The

apps not including the APIs were filter out, since apparently

they are not implemented with any ZeroConf mechanisms.

From what remained, we randomly sampled 10 to 20 apps

for each ZeroConf channel and inspected their code statically

and dynamically to find out whether they are vulnerable to

the impersonation and MitM attacks. For those confirmed

to be vulnerable (without proper authentication of the peers

the device talks to), shown in Table II, we further studied

what sensitive information could be leaked to the adversary

capable of exploiting the aforementioned vulnerabilities.

BLE. For apps using the BLE channel, we searched

on the Apple App Store using keywords Bluetooth,
BLE, Bluetooth low energy, etc. From all the

apps returned, those not calling the BLE API

scanForPeripheralsWithServices:options:
and startAdvertising: were automatically removed.

Among what were left, we randomly selected 13 apps and

confirmed that 10 of them are vulnerable to our MitM attack

(see Table II). The other 3 apps require pre-shared secrets,

e.g., a shared bar-code or a piece of code distributed by a

remote server, which need to be jointly configured by the

parties involved in the communication.

We further looked into what sensitive information these 10

vulnerable apps could disclose to the adversary. It turns out

that some of them (e.g., BT Msgr, Sochat) use the BLE

channel for instance messaging (IM) with other devices

nearby, which completely avoids the need for Internet

connection and accounts registration. However, such apps are

subject to our MitM attacks (see Section III-A) due to their

lack of authentication over BLE: we found that our attack

device easily intercepted the messages exchanged between

these devices by claiming their device names or service

instance names.

As another example, a popular app Near Lock on both

iOS and Mac leverages a user’s iPhone to automatically lock

and unlock her Mac. Specifically, when the user (with her

iPhone) walks away from the Mac, the Mac app locks OS X

automatically. Once she comes back, the app automatically

unlocks her OS X. This happens because the iOS app transfers

the user’s login credentials (user name and password) to its

OS X counterpart through BLE. Since this ZeroConf channel

does not properly authenticate the parties connecting to the

device and the laptop, the app is completely vulnerable to

the MitM attack similar to what is described in Section III-A.

Actually, Near Lock already puts some protection in place,

encrypting the data transferred. However, the secret key

is hard-coded within its binary and was recovered in our

analysis. Through our MitM attack, we were able to obtain

the user name and the password for the app user’s Macbook.

MC. Also, we analyzed the Apple apps discovered

using the key words Multipeer, Multipeer Connectivity
etc. Again, only those containing specific APIs, such as

initWithPeer:discoveryInfo:serviceType:,

initWithPeer:serviceType:, initWithServi
ceType:discoveryInfo:session: were selected.

From the apps, we further randomly sampled 24 in two

sub-categories, those directly using the peerID provided

by the MC framework (Section III-B) to identify peers and

those using their own identifiers, like QQ (Section III-B).

We manually confirmed that all these 24 apps are vulnerable.

From all the apps we studied, we found that the

MC framework is frequently utilized to quickly transfer

photos and files to peer devices nearby. This design takes

advantage of the high bandwidth of local networks, without

resorting to the relatively slow Internet connection. A

prominent example is the popular app Bluetooth U,

which transfers files between the iOS devices standing

close to each other. The app implements a callback of MC,

session:didReceiveCertificate:fromPeer:
certificateHandler:, which receives a certificate

from its peer before establishing a secure channel between

them. It turned out that, however, just like the certificate

dilemma in AirDrop (Section III-C), without a pre-

configuration to bind the peer device to its certificate, the

app cannot properly verify the certificate, linking it to its

owner. This allows an MitM attack to succeed, leaking

out all sensitive files transferred to a man in the middle.

Some other apps use MC to deliver one’s photos to the peer

devices, e.g., Photo Transfer, which were found to

be equally vulnerable to our MitM attacks, disclosing all

photos to the adversary.

Interestingly, we also find that MC is taken advantage of by

dating apps for instant messaging with people nearby even

when Internet access is not available, e.g., waiting to get

on board or even in flight. Airdates is such an example,

which is designed to work even in Flight Mode. This app

utilizes MC to automatically find peers devices nearby, which

allows the user to continue his/her chat privately with people

on the same aircraft even after boarding and in flight. With

the MC vulnerability (Section III-B), the MitM attacker can

intercept any message transferred between victims.

Bonjour. We further studied Bonjour-based ZeroConf apps,

which were collected from the App Store using the keywords

like photo transfer, file transfer, server, bonjour, printer,

remote control, and local media, etc. From the collection, we

randomly chose 22 of them, among which 18 were manually

confirmed to be vulnerable. These apps are not only used

for local transfer of files and photos, but also designed to

share clipboard across peer devices, print from one device

to another, and even turn one device into a remote for its

other devices (see Table I). Those we still cannot exploit

utilize pre-shared secret (e.g., manually entering a PIN code)

to authenticate the peer devices during the communication

and therefore require joint effort from the peers to configure

their systems.
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An example of the vulnerable Bonjour apps is Copybin, a

popular program that synchronizes data (files, directories and

clipboard) across multiple devices. When only two devices

running the apps within the same network, they connect

to each other automatically. If there are multiple ones, the

user needs to choose from a list of device names the party

she wants to talk to. The problem of the app is that it

does not authenticate the peer device when connecting to it.

This allows impersonation and MitM attacks to succeed.

Another example is Printer Pro Lite, an app that

enables the user to print documents from her iPhone to

her Mac. Again, we found that the communication between

devices is not authenticated when using the app and therefore

can be exploited to steal the document transferred between

them.

Homegrown ZeroConf. In addition to those running existing

ZeroConf mechanisms, there are apps that communicate

through their own configuration-free techniques. To find

out these apps, we retrieved from the App Stores a set of

apps using the aforementioned keywords and filtered those

using known ZeroConf channels, e.g. Bonjour. We manually

execute such apps to find out whether they are trying to

automatically discover peer devices in the neighborhood. If

so, we collected their traffic using WireShark and inspected

their binary code. Every possible problem discovered from

the traffic and binary code was further evaluated by running

our attack device to perform an impersonation or MitM attack.

Here we elaborate two popular apps that are problematic.

The first example in this category is Remote Mouse,

which is the 13rd most popular app in Utilities of the Mac

App Store. Once installed on the Mac OS, the app allows

the user to control the Mac OS through her iPhone using

the iOS version of this app (e.g., remote keyboard input,

mouse control, shutdown/restart/sleep/logoff or app launch).

More specifically, we found that the server running on the

OS X automatically broadcasts UDP packets to the local

network using destination port 2007 and 2008. The data field

of the UDP packets are the device name and IP address, etc.

After receiving the broadcasted UDP packet, the Remote
Mouse client on the phone allows the user to choose a

target server and establish TCP connection with the Mac

using the received information, such as IP, device name,

etc. This app, However, turns out to have a similar problem

as Filedrop (Section III-B) whose device name could be

mimicked. Consequently, an MitM adversary exploiting the

problem could steal sensitive information transferred from

iOS to Mac, such as remote keyboard input, which could be

passwords or any other sensitive data.

As another example, an app called SHAREit by Lenovo,

the world’s largest PC vendor [11], also built its own

ZeroConf mechanism. This is a cross-platform app on iOS,

Android, Windows, with over 50 million downloads, which

is designed to transfer files to peer devices in the same

local area network. When operating in “receiver” mode, it

sends UDP packets to multicast address 255.255.255.255,

including a “from” field (used as device identifier), IP address,

a “nickname” field (used to display the target name by the

“sender” device). When another device running in the “sender”

mode receives such a UDP multicast packet, the sender

automatically sends back a unicast UDP packet to the receiver,

exchanging device identifier, IP address, nickname and more.

Next, the sender and receiver establish a TCP connection,

through which the sender could send files. These ZeroConf

steps proceeds automatically, without any pre-configurations

on any of the devices. This usability oriented app, again, is

susceptible to our MitM attack, when the device identifier and

nickname could be hijacked. As a result, any files transferred

in the local network, through wireless or wired connection,

are completely exposed to the adversary.

IV. PROTECTING APPLE ZEROCONF

Our security analysis shows that there is a significant

misalignment between the usability-oriented design that

characterizes existing Apple ZeroConf systems, and the

security threats they face in practice. Although it is tempting

to think about falling back from the whole idea of ZeroConf,

and instead ask the users to jointly configure their individual

systems (e.g., sharing secrets) before the communication

happens, such configuration steps can indeed become cumber-

some and in some cases complicated. As an example, consider

the situation that a different secret need to be distributed

to every pair of Mac desktops within an organization for

secure file transfer, or between a device and all the printers it

connects to, for protecting the documents it prints. Even when

it comes to the configuration between two mobile devices,

a simple approach like scanning QR code was found to be

inconvenient and not preferred by mobile users according to

a prior survey [40], which has been further confirmed in our

human subject study.

To better protect the ZeroConf system without undermining

its usability, we developed a suite of novel techniques in our

research. More specifically, we first consider an optimistic
approach in which the device considers its operating envi-

ronment safe if the necessary condition of an impersonation

or MitM attack is not satisfied. A more generic solution is

to leverage Apple’s PKI to authenticate the parties involved

in ZeroConf operations. Our research brings to light where

the existing PKI fails and how to bridge the gap and make

it work on today’s ZeroConf systems.

A. Conflict Detection

A key observation from our security analysis of ZeroConf

systems is that any attempt to impersonate an existing device

must hijack that device’s service instance name or host name,

which will cause a conflict observable to the party searching

for the victim (the device being impersonated) when the

victim also responds to the party’s request and the adversary
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cannot interfere with their communication (Figure 6(a)).

In practice, disrupting two parties’ communication through

a WiFi direct link or a local network is difficult for the

adversary without access to the routing infrastructure of

the network. Further, in all the scenarios we analyzed, it

is reasonable to consider that each party involved in the

communication knows it happening and her device is on,

ready for receiving messages. Since identity hijacking is a

necessary condition for the impersonation and MitM attacks

and the conflict is inevitable assuming no disruption and

the victim always on, we can conclude that a ZeroConf

network is attack-free, under the assumptions, if no conflict

is observed.

This observation leads to a conflict-detection design and its

implementations on OS X and iOS, which defeats our attacks

and also fully preserves the usability of the existing ZeroConf

systems. Here we elaborate our design and implementation.

Design. In a ZeroConf network, whenever the sender broad-

casts a service discovery or name resolving message, the

hosts that meet the requirements set by the sender (e.g.,

a given type of services) respond with a set of identity-

related attributes, e.g., service instance name, device name,

host name, IP address, etc., notifying the sender of their

existence. Also every member in the network caches the

response (e.g., the IP address of a host) for the follow-up

communication. In the presence of an impersonation attack,

the adversary needs to either reply to the sender’s request

with the service name or the host name of the victim (the

rightful owner of the attributes), which causes a conflict

the sender sees immediately, or later communicate with the

sender to update its cache. In the former case, the sender

detects the conflict and decides that the current environment

may not be attack-free. In the case of the cache updates (for

resolving service name to host name, or host name to IP),

the sender can broadcast the updates it receives and wait for

a conflict complaint, which the victim is supposed to send

in the presence of an attack; if no complaint arrives within

a timeout window, the updates are considered legitimate.

Where is service “HP Printer [928FE5]”?

“HP Printer [928FE5]” 
is on Attacker-Macbook.local

I have service  
“HP Printer [928FE5] (2)”

Where is service “HP PrW

I h

Conflict

Where is service 
    “9c5e3d2._airdrop._tcp.local”?

“9c5e3d2._airdrop._tcp.local” 
 is on Attacker-iPhone.local

“9c5e3d2._airdrop._tcp.local” 
 is on Jeffs-iPhone.local 

Where is serviceW
“9c5e3d2._airdrop._tc

is on Atta

“9c5e3d2.

Conflict

(a) Conflict detection during service discovery

(b) Conflict detection when the service name is saved 

Any service name like “HP Printer [928FE5] (x)”?

Figure 6: The Design of Conflict Detection

In practice, the situation can be a bit more complicated.

For the ZeroConf system like Bonjour, the sender can save

the service instance name (e.g., for printer) to skip the service

discovery stage next time and directly resolve the service

name to the host name and the IP address. The trouble is

that such a system includes an inherent conflict resolving

mechanism: the attack device can directly notify the victim

(through unicast) that it is claiming the same service name,

forcing the victim to switch to a different name, as described

in the attack on Bonjour printer discovery (Section III-C);

when this happens, the sender does not get information about

this change and therefore will follow the service name to

communicate with a wrong host. To address this issue, we

leverage the unique way Bonjour resolves such a conflict,

in which the victim automatically takes a new name with

a fixed format: e.g., from “HP Printer [928FE5]” to “HP

Printer [928FE5] (2)”. This allows the sender to attempt to

resolve both service names before the communication and

detect a conflict if the second name also gets a response.

Figure 6(b) illustrates the design.

Once a conflict is found, the sender needs to decide how

to move forward. Depending on the specific application

scenario, it can either resolve the conflict automatically or

ask for manual intervention. Specifically, for AirDrop and

other file transfer apps, the sender can solicit the SPYC

vouches from the parties it will establish a TLS channel with.

In this case, the conflicting parties’ voice recordings will

be both played to the user to decide who to connect (for

more details, see Section IV). For printer discovery, what

the sender can do is to send an error report to the system

administrator, asking for an investigation on the the conflict.

Note that although not all conflicts are caused by malicious

acts, in practice, service instance names and host names

are generated in a way that conflicts can be avoided (e.g.,

appending the names with random strings) and therefore

innocent conflicts are rare.

Implementation. With its relatively simple design, imple-

mentation of the technique on OS X and iOS, however, is

by no means trivial. Due to the closed nature of the OSes,

direct changes to its system service like AirDrop is off the

table. In our research, we built an app to detect the conflict

on Bonjour-based systems, a first step toward securing a

typical ZeroConf system. Even such a third-party solution

relies on in-depth understanding about how the systems work.

For instance, we found that Bonjour running on iPhone and

Macbook transfers data through Apple Wireless Direct Link
(AWDL), a low latency and high speed WiFi peer-to-peer

connection that operates on a dedicated network interface,

typically awdl0. Apple does not let a third-party app access

this “Apple-private” interface, since they are all supposed to

use the common interface en0 for wireless communication.

This makes conflict detection impossible because both the

attacker and the victim’s mDNS traffic cannot be observed by

our protection app. To find a solution, we reverse-engineered

mDNSResponder, a dedicated Apple system process that

sends and receives mDNS packets, and maintains mDNS
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caches. More specifically, we ran Hopper, a disassemble tool,

to dissemble mDNSResponder. From its binary code, our

analysis shows that the program configures a listening socket

through the system call setsockopt(). Interestingly, we

found that when the call’s option name parameter is set

to 0x1104, a private value never made public, the socket

can work on awdl0, which allows a third-party app that

establishes the socket connection through the system process

to send and receive data from this private network interface.

Access to awdl0 is only the first step. To monitor the

Bonjour traffic, we need to monitor the port 5353, where

mDNS packets go. This is challenging as mDNSResponder
has already occupied this port ever since the OS starts.

On Mac OS X, our solution is to share the port 5353

with mDNSResponder, which we found can be done

by setting the SO_REUSEADDR flag in the system call

setsockopt(). In this way, a third-party native app we

built (with the root privilege) successfully acquires the right

to listen on the port and monitor all the Bonjour traffic. This

approach, however, cannot work on iOS without jailbreaking

the device to gain the root privilege. Therefore we need to

find another way to implement our conflict-detection app.

On iOS, what we can leverage is an interface that

allows a third-party app to query mDNSResponder for

the mDNS traffic it processes. Specifically, an app can

call DNSServiceBrowse to talk to mDNSResponder
through inter-process communication. From this channel,

the app can obtain such information as the service name,

host and IP addresses of the party communicating with

the system services such as AirDrop. A problem here is

that the mechanism is not designed for conflict detection:

when more than one device claim the same service name or

host name, only one will be returned by mDNSResponder.

This makes sense when considering the nature of ZeroConf,

which allows a device to change its host name, IP, etc.

on the fly (e.g., a user may alter her device name in the

Settings of her device). However, the treatment also

denies our protection app any chance to find conflicts. Our

solution is to discover such service parameters through a

different channel and then compare the findings with what is

reported by mDNSResponder. Specifically, consider that

all the devices in the communication run our protection

app. Whenever the user invokes AirDrop, our app first

broadcasts a service discovery request through a different

port (10011 used in our implementation) to other devices

in the ad-hoc network to collect their (serviceName,
hostName, IP) from the protection apps listening on

the port on these devices. The list of triplets received from

the devices are then compared with the outcomes of the

query on the AirDrop traffic managed by mDNSResponder
to detect any conflicting identity attributes from different

devices. Once the conflict is found, the system resorts to

other means, such as the SPYC vouch (Section IV-B) to

determine which party to communicate with.

B. Speaking out Your Certificate

The conflict detection techniques work completely auto-

matically, fully preserving the zero-configuration property of

existing systems. However, in the presence of a conflict, it

cannot help the user identify the trusted party to connect to.

Also a more fundamental solution against the impersonation

and MitM attacks should rely on authentication of the parties

involved in communication. In the absence of a shared

secret (which needs to be configured across multiple devices),

apparently the best solution is to leverage Apple’s PKI, using

each party’s Apple certificate to establish a secure channel

between authenticated peers. This treatment, however, turns

out to be more complicated than it appears to be: in all the

data-sharing cases mentioned above, only Handoff can be

potentially secured by authenticating two apps (across iPhone

and Mac) with their app signatures; all other cases involve

the certificate of a user’s Apple account. The challenge here

is how to properly verify one’s ownership of a certificate,

which has not been addressed by existing techniques.

Personal certificate. To link a certificate to a user, we need

to attach to the certificate some identifiable but nonsensitive

information from the user, which also needs to be well known

to her contacts. Our idea is to use her voice biometrics to

tie her certificate to her identity, assuming that the party

verifying the certificate knows her voice. Specifically, we

developed a technique that enables the user to speak out

her certificate and use the voice recording to vouch for the

relation between the certificate and her identity. To verify

the certificate, one first needs to check whether the voice

indeed belongs to the person she knows and also whether the

certificate content has been correctly spoken. The logic here

is that to impersonate someone else, the attacker needs the

victim’s cooperation to speak out the attacker’s certificate,

which is not supposed to happen. As a result, the attempt to

deceive other parties into using the attacker’s certificate as

the victim’s will fail if those parties know the victim’s voice.

Making the idea work in practice, however, is much

more complicated: after all, we cannot ask the user to read

through all the content on her certificate, which is long and

contains mostly numbers, both hard to read and hard to verify

(by checking whether both voice and the content read are

accurate). Our solution is a new technique, SPYC (Speak

out Your Certificate) vouch, which converts the certificate

into a few pronounceable but rare or even fake words (for

preventing a synthesis attack using the records of one’s daily

conversation) that uniquely summarize the content of the

whole certificate. By voicing these words, one generates a

vouch for her certificate, which ties the certificate to her

identity, whose correctness can be conveniently verified by

humans (Section V).

The use of the SPYC vouch avoids the need to jointly

configure secrets between the parties in communication: that

is, no longer do we need two users to work together to
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configure their systems before they can securely talk to each

other. On the other hand, it still needs the user to record

her voice the first time when she uses the system. This can

be part of the certificate exchange step and therefore does

not need to be done through the configuration of the system.

Also, during certificate verification, one still need to listen

to the record and confirm that it is indeed from the right

party who says the right words. This step is very much in

line with the current use of ZeroConf systems, which often

need the user’s intervention to choose the peer they should

contact (e.g., Jeff’s iPhone).

SPYC vouch. Consider a user A with a certificate C issued

by a certificate authority (CA), which is used to communicate

with another user B. Here is how the SPYC vouch of the

certificate is created and verified.

• Certificate mapping. The CA first computes a hash value

h = H(C, s), where H is a cryptographic hash function and

s is a random string. The random string can be part of C
(e.g., a string attached to its common name), and otherwise,

it needs to be signed by the CA together with C. Then, the

CA extracts σ, a string with the nk most significant bits from

h, and partitions it into k n-bit segments: σ = σ1‖ · · · ‖σk

(where ‘‖’ is concatenation). During this process, s is selected

in a way that σ1 · · ·σk are all different. These segments are

used to look up a dictionary with 2n words: from the locations

σ1 · · ·σk, the CA picks out k words W = 〈w1, · · · , wk〉 and

sends (C, s, W ) and the signature on C and s to A.

• Vouch generation. The first time the user A sends out the

certificate (e.g., through AirDrop), her device requires her to

speak out all the words in W . The recording of her speech,

R, together with (C, s, W ), forms her SPYC vouch VA.

• Verification. Before establishing a secure channel with

B, A first sends to B VA. The user B’s device checks the

signature on C and s, and computes H(C, s) and uses the

same dictionary to verify W . If correct, it displays W to B
and plays R. The user B verifies that indeed it is A’s voice

and indeed all words 〈w1, · · · , wk〉 have been spoken. Once

this is confirmed, the device automatically binds C to A and

stores this relation.

Intuitively, our approach maps a user’s certificate to a set

of words using the truncated hash value of the certificate and

a public dictionary. Each segment is interpreted as a position

to locate a word in the dictionary. Verifying the certificate

requires a joint effort from the device and its human user:

the former confirms that the words match the certificate’s

hash and the latter ensures that the words are spoken with

the right person’s voice. Our implementation truncates the

output of SHA-256, using the first 102 bits to locate 6 words

(17 bits each) from a dictionary of 222,595 words.

Center to the approach is the dictionary, which needs

to be chosen carefully. It is expected to contain a large

number of words that are both pronounceable and rare. The

first property is for usability and the second is for security:

those words should be very unlikely to be used in daily

life and sound different from common words, which makes

one’s voice samples for the words hard to obtain. This is

important for defeating a speech synthesis attack. In our

research, we looked into different options, including fake

word generators [34], make-up word list [49] and different

kinds of dictionaries. We found that although a fake-word

generator can easily produce a large number of words never

used in real life, those words are often difficult to pronounce

and in some cases, sound similarly. The make-up word

list includes the fake words of better quality, though still

not extremely easy to speak. By comparison, most of the

dictionary words are easily pronounceable, even for those

rarely used. In our research, we removed from Google’s

Trillion Word Corpus[1] 10000 most common words and the

remaining words have only less than 2% of chance to be used

in daily life, according to a study [43]. From these words,

we further dropped 1154 words with similar pronunciations,

based upon the list provided by [26], [7]. The new dictionary

built in this way contains 222595 words. Table III shows

examples of the words from the dictionary.

Words List from Words Examples

Fake Word Generator
onviscei, ushfur, leontyl,

dedebuturav, epreansean, stioncisi

Make-up Word List
phrintce, ghighgns, scrawgued,
quawgn, snyscks, dwoarched

Rare Dictionary Words

ablegate, elvish, patronship,
satisfice, tagatose, unnerved

automorphism, choregic, miliarensis,
hariolate, porterage, lagomorph

spiritdom, mischievously, noonstead,
antiquation, gigsman, lusciously

Table III: Words examples of different words lists

Security analysis. The security guarantee of the SPYC vouch

is based upon the challenges the adversary faces to obtain

the victim’s voice for the adversary’s certificate, a necessary

step to impersonate the victim to other parties. This is

considered to be extremely difficult. Specifically, hoping

that Apple (the CA) accidentally issues two certificates with

the same word sequence is unrealistic, which is on the order

of 2−nk, in our implementation, 2−102. The main avenue

left here for the adversary is synthesizing the victim’s speech

on the adversary’s certificate words. Prior research [50]

shows that the existing voice-based authentication over

VoIP is vulnerable to the voice reordering attack, in which

the adversary reorders previously eavesdropped words and

sentences spoken by the victim to produce the short speech

for authentication, and the voice morphing attack, where

a few sentences spoken by the victim are used to convert

another person’s speech into hers. Our design ensures that

the chance for a successful reordering attack is negligible.

Specifically, all the words in the SPYC vouch are distinct

and rare, even never used in daily life. Therefore, collecting

appropriate voice samples for those words from one’s daily

life or public audio materials (e.g., Youtube video) is hard. If

the adversary expects his certificate to contain all the words in
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the victim’s certificate, though in a different order, the odds he

is facing is as follows: k
2n × k−1

2n−1×· · · 1
2n−k+1 < k!

(2n−k+1)k
,

which is well below 2−90 with the parameters chosen in our

implementation (n = 17 and k = 6). Note that the CA is not

under the adversary’s control and trying out new certificates

issued by Apple, through registering new accounts, needs to

go through CAPTCHA and other steps and therefore cannot

be done efficiently.

When it comes to the voice morphing attack, we analyzed

the state-of-the-art voice transformation technique, CMU’s

Festvox [5], which has been used in the prior research to

show the attack on voice-based authentication [50], [47]. Our

study shows that unlike the authentication performed over

the noisy and stream-based VoIP channel [27], the SPYC

vouch is pre-recorded (once for all) and entirely delivered

(through TCP) to the recipient before played, and therefore

the SPYC vouch has a much better quality. On the other hand,

the current voice morphing technique is still distance away

from producing perfect sound, as acknowledged to us by the

member on the Festvox project. Specifically, we found that

even in the ideal situation, using noise-free voice samples

from the victim, still the voice created sounds robotic and in

the most cases is quite far away from the voice of the target

individual being mimicked: in one of our human subject

studies (Section V-B), all 20 participants easily identified

the unique features of the synthesized speech and when

comparing the speech with that from the victim, which is

exactly the situation when the user has to compare two

vouches to resolve a conflict, all of them chose the right one

with high confidence. The findings make us believe that the

threat posed by today’s voice synthesis techniques to voice

authentication is likely to be still limited.

On the other hand, we acknowledge that our technique is

not designed to defend against a dedicated, targeted attack,

in which the adversary may spend a long time to collect a

large amount of the victim’s voice samples or even actively

lure her into uttering the words or the sound similar to what

the adversary looks for.
1. Start Airdrop2. I am Jeff’s iPhone

2. I am Jeff’s iPhone

3. Conflict

4. SPYC vouch request

4. SPYC vouch request

5. SPYC vouch V1

5. SPYC vouch V2

6. Verify 
vouch

7. Play Audio

V1
8. Monitor and Allow connection

8. Monitor and Deny connection

Sender

Receiver

Attacker

V2

Figure 7: Integrating SPYC vouch into Airdrop

AirDrop integration. To understand whether the SPYC

vouch can be easily used in a real-world ZeroConf system,

we studied how to integrate the technique into AirDrop.

Ideally, the integration can make SPYC part of AirDrop

(Figure 7). As mentioned earlier (Section III-C), during the

service discovery stage, the AirDrop sender establishes a

TLS connection to every service instance discovered and

then utilizes the hash value of the Apple ID email acquired

from the server to locate the contact on the sender device.

When this attempt fails, what we can do is to let the sender

request the server’s certificate vouch. The content of the

vouch (delivered through the TLS channel) is first checked

by the sender device to ensure the consistency between the

certificate and the words. Then, the user on the sender end

listens to the audio recording to authenticate the owner of the

certificate. A verified certificate is then kept by the sender,

together with its owner.

This design, however, cannot be built into OS X and iOS

without Apple’s help, because AirDrop is a system service

and just like other system components on the Apple platform,

it is closed source. What we implemented in our research is

an integration that utilizes a third-party app (called monitor)

to control the AirDrop communication. Specifically, on OS X,

the monitor, with the native privilege, runs netstat to keep

track of the parties the AirDrop sender is interacting with.

Once the sender is found to establish a TLS connection

with an IP address, the monitor immediately connects to its

counterpart (another monitor app) on the service device with

that IP to acquire the device user’s SPYC vouch. The user on

the sender side then verifies the vouch through the monitor

before deciding on whether to drop a file to the server (by

clicking on the service instance name displayed through the

AirDrop interface). We also built an enforcement mechanism

through which the monitor can configure pfctl (similar to

iptables [10] on Linux), a firewall working on the UNIX layer

of the OS X, to prevent AirDrop from communicating with

other IP addresses before the current AirDrop transaction

is done. Our implementation on iOS works in a similar

way except that it cannot rely on pfctl, a component not

available on iOS. Therefore, the iOS monitor only detects the

potential problem (e.g., when its counterpart on the observed

IP address does not exist or when the SPYC vouch is not

correct) and report to the user and alert her to what can go

wrong. A demo of our system is posted online [22].

V. EVALUATION

In this section, we report the evaluation of our protection

techniques (Section IV) through two human subject studies

involving 60 participants and a performance valuation.

A. Usability And Effectiveness

The usability of our protection (Section IV) was evaluated

through a user study approved by our organization’s IRB. For

the study, we recruited 40 participants. All of them utilized

the implementation of our monitor app (Section IV-B) to

authenticate his/her friend or acquaintances in the presence

of an MitM adversary. Through a post-test questionnaire, all

participants agreed that our monitor app is convenient and

comfortable to use. Regarding effectiveness, all participants

were able to easily distinguish their friend or acquaintance’s

voice from that of the adversary.
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Recruitment. Our study (Study 1) was advertised as an

investigation that “evaluates the usability of voice based

authentication” (from our advertisement). The recruitment

effort resulted in 40 participates from an educational insti-

tution, all coming in pairs. Each member in a pair claimed

to know the other’s voice since this is a requirement for

participating in our study (also the assumption for the SPYC).

The demographic information of the participants is presented

in Table IV (under column Study 1). We informed the

participants that this is an anonymous study that does not

collect any personal or identifiable information. We offered

each of them a compensation of 10 USDs.

Study 1 Study 2
Number of Participants 40 20
Gender

Male 55% 55%
Female 45% 45%

Age
18-20 35%
21-25 62% 15%
26-30 33% 35%
31-35 5%
50+ 15%

Education
High school diploma 3% 30%
Some college 3% 10%
Bachelor’s degree 40%
Master’s degree 47% 55%
MBA 7%

English as Primary Language
Yes 28% 50%
No 72% 50%

Table IV: Demographic Information of Participants

Experiment. The experiment took place in two different

rooms within our organization. It took each pair about 35 min-

utes to complete the task and the experiment was conducted

one pair at a time. In the experiment, the participants were

first asked to fill a pre-test questionnaire designed to collect

demographic information, as well as other situations that

might affect the effects of the study. For example, we asked

their native languages and in what language they usually

speak to their partners (the other member in the same pair).

We also collected the confidence level about their familiarity

with the other’s voice, which was chosen from (definitely,
probably, note sure, probably not, definitely not).

Following the questionnaire, we explained to them how

our SPYC system works. We clearly told the participants

that they need to evaluate the usability of the system, i.e.,

whether it is convenient and comfortable to use. We assigned

the pair of participants different roles, one as the “sender”

of a document through Airdrop, the other as the “receiver”.

Then the two participants were placed in different rooms,

not being able to see or hear each other. They were each

given an iPhone (running iOS 8.4) on which they could

run our monitor app. The first time a participate launched

the monitor, he/she followed the on-screen instructions to

record his/her voice of the six words (in English) from our

dictionary that describes a certificate (Section IV-B). They

were aware that this recording only needs to be done once

for all. Also nearby operated by our researcher were two

devices acting as the MitM adversary. On one of the devices,

an adversary already spoke out his certificate (recording 6

words). On the other, we asked the receiver to record 3,4 or

5 words they spoke (for the certificate) while the adversary

spoke the remaining words (totally 6 words) which was also

recorded. Till this point, the experiment setup was done and

we then asked the sender to authenticate the three receivers,

the real one together with the two from the adversary devices.

The sender, right before sending a file to the real receiver

using AirDrop, was reported by the monitor three conflicts

(the real receiver, the two adversaries, one using his/her own

voices and the other using the recording of the mixture of the

real receiver and the adversary’s voice). He/she then listened

each receiver’s SPYC vouch and indicated which belongs to

his/her partner through our app. We then asked the sender and

the real receiver to switch roles and repeat the experiment

above. This allowed each of them to evaluate the usability

of the system at both the ”sender” and the ”receiver” roles.

The pair were also asked to operate on the Mac version of

our monitor app to find out its usability, since document

delivery through AirDrop also happens between Mac OSes

and between iOS and Mac OS.

At the end of the experiment, each participant was asked

to finish a post-test questionnaire. We asked whether they

thought our app was convenient to identify their partner

and comfortable to use. We also asked them to compare

our voice based authentication with two other authentication

mechanisms. The first one is Physical Method, through

which two participants must walk to each other, face-to-

face, and share a pre-configured secret between their devices

(iPhone or Macbook). We let the participants aware that

the WiFi Direct (on which AirDrop is built) supported up

to 200 meters in distance [9]. The second mechanism is

Out-of-Band Method, through which the participants

are supposed to share a pre-configured secret through an out-

of-band channel, such as email, text messages, phone call or

social networks, etc. By answering our post-test questionnaire,

all participants compared our SPYC mechanism with the two

alternative methods. The results are reported below.

Results. All participants thought that SPYC was convenient

and comfortable to use. In the direct comparison with

Out-of-Band Method, 39 participants out of 40 agreed

that our voice method was more convenient, and 1 preferred

the alternative approach. In the direct comparison with

Physical Method, 36 participants out of 40 agreed that

our voice method was more convenient, 2 neither agreed

nor disagreed, and 2 participants thought that the alternative

(Physical Method) was more convenient.

Besides, as indicated in our pre-test questionnaire, 12

out of all 40 participants (30%) reported to regularly talk to
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his/her partner (of our study) in English. Also, 12 participants

(30%) reported that “definitely” sure about his/her partner’s

voice and 26 (40%) reported “probably” and 2 (5%) reported

“not sure”. Even though some pairs of participants did not

regularly talk to each other in English or were even not sure

that they were able to recognize their partner’s voice, all

participants in our study successfully distinguished the real

receiver’s voice from that of the adversary and the mixture

one in our experiment. The result provides evidence that the

SPYC vouch is both convenient and reliable to use.

B. Resilient to the Voice Morphing Attack

A recent study shows that existing voice-based authentica-

tion over VoIP is vulnerable to voice synthesis attacks [50],

including a re-ordering attack in which the adversary reorders

and pastes the victim’s voice unit (words or sentences)

together to form a speech for authentication, and a voice

morphing attack in which the adversary’s voice is converted

to that of the victim’s in speaking authentication terms,

using Festvox [5], a state-of-the-art voice transformation

tool developed by Carnegie Mellon University. The design

of the SPYC vouch ensures that only distinct and rare or

complete fake words will be spoken, which defeats the re-

ordering attack. Our design of using pre-recorded words

instead of speaking over the noisy VoIP channel could also

potentially make the attack less effective, particularly given

that the current transformation technique still cannot fully

achieve the quality that makes the synthetic and the real

voice indistinguishable. Further with the help of the conflict

detection, authenticating SPYC vouches mostly happen when

the real user’s voice is present together with that from the

impersonator, which could make the attack even harder to

succeed. Saying that, an experimental study is important

to understanding whether indeed our SPYC mechanism is

capable of withstanding the morphing attack. To this end,

we performed the second user study (Study 2).

In our study, we ran the most up-to-date version of

Festvox [5] (the same system used for the attack in the

prior work [50]) to create voice morphing attacks, when

the participants were using our system. Specifically, we

transformed the voice of an “attacker” into each participant’s

voice using Festvox, and then used the transformed voice to

mislead the participants.

Recruitment. We recruited 20 participates from the same

educational institution. Again, all participants came in pairs,

claiming to know each other’s voice. Due to the complexity

of the task, each participant was paid 20 USDs for completing

the tasks. Demographic information of the participants is

given in Table IV (under column Study 2). We also recruited

a male and a female “attackers”. Each spoke 50 sentences,

which were recorded to train Festvox [5], as happened in

the prior study [50]. Each of them also recorded his/her

voice for three SPYC vouches. The objective of the attack

was to transform the attacker’s voice into the victim’s when

speaking the vouch.

Experiment The experiment took each pair of participants

about 45 minutes in separated private rooms. Each pair were

first asked to fill a pre-test questionnaire similar to the one

described above. Then, each participant spoke exactly the

same 50 sentences spoken by the attacker based on gender.

This is necessary for Festvox to train a model that transforms

the attacker’s voice to the participant’s. Again, the size of the

training set is exactly what was used in the prior study [50].

Besides, each participant also spoke 3 SPYC vouches which

were recorded and used for comparison later.

After the voice recording, we waited 10 minutes for

Festvox to learn the voice features of the two participants

(denoted by A and B) and the attacker (Mal). Then Festvox

transformed the three SPYC vouches spoken by the attacker

into A’s voice (denoted by VoiceMal to A) and B’s. After

that, we conducted four tests on both A and B separately. In

particular, in the test 1, the participant A listened to the first

transformed vouch (mimicking B) and indicated whether it

indeed came from B. In the test 2, we first let the participant

know that voice might be synthesized, not spoken by the

original person. Then during the experiment, we randomly

chose between the synthesized vouch or the authenticate one

(note the content was completely different from that used in

the test 1) and let A decide whether he/she heard the authentic

vouch from B. In the test 3, the participant A listened to

both the synthesized voice (mimicking B) and the original

SPYC voice spoken by B (different content) to tell which

one came from B. This test evaluated the effectiveness of

our technique under the scenario where our monitor detects

the conflict and plays the SPYC vouches from the related

parties to the user for conflict resolution. Also in each test,

the participant rated the quality of each piece of voice with

(poor, fair, good, very clear). In the test 4, we

repeated what was done in the test 2 (using different voice),

except that the participant was told before the test that the

authentic vouch was expected to be of good quality under

our design. Participant B did the same set of tests as A

completed, except that the fake vouches now were based

upon mimicking A’s voice.

Result The results of all four tests indicate that our protection

was successful in defeating the voice morphing attack.

Specifically, in the test 1, when the participant was not aware

of the possibility of the attack, 17 out of the 20 participants

did not believe the authenticity of the vouch while the

remaining 3 did. However, in the test 2, when they knew voice

could be synthesized and listened to only one piece of voice

(randomly chosen between the authentic and synthesized

vouches), all 20 participants correctly identified the original

voice and morphed voice. In the test 3, when morphed and

original voice were put together for a comparison (mimicking

the situation of conflict resolving), all 20 participants easily

made the right choice. In the test 4, when the quality of the
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voice was considered, all 20 participants easily differentiated

the fake and real vouches.

The outcomes of our study show that even with the

progress made by the state-of-the-art voice transformation

techniques, voice-based authentication can still provide

effective protection, particularly when the system has been

carefully designed to exploit the weaknesses of the current

voice-synthesizing technique (e.g., difficulty in producing the

high-quality voice, as acknowledged by a member on the

Festvox team). Also note the cost of such voice morphing

attacks is nontrivial: the attacker needs to record the victim’s

voice for 50 sentences of high quality (as did in our research)

and speaks exactly the same 50 sentences before the voice

transformation can be done.

C. Performance

We further evaluated the performance of our monitor app

on two Macbook Pro (Mid 2014 model, 2.6 GHz Intel i5,

8 GB memory, SSD) and two iPhone 5. On the Macbooks,

we found that throughout our study, the CPU usage of our

monitor is 1.5% and the memory usage was 28 MB on

average. On iOS, the average CPU and memory usage are

below 6.5% and 9 MB. Further in our study, we measured the

delay introduced when running our monitor app to protect

AirDrop. The delay here comes from three sources. The first

is the time required for speaking out a certificate (SPYC,

Section IV-B). As stated before (Section IV-B), this only

needs to be done once for all. We asked 10 users to speak

out their randomly-generated certificates three times each and

found that the time one took to speak her certificate ranges

from 5.2 to 7.4 seconds, with the average 5.98 seconds.

The second source is the delay in listening to the SPYC

vouch and identifying the person in communication. In our

research, we measured this delay on both the iPhone and

the Macbook, based upon 10 users’ experiences with each

of them repeating the experiment for 10 times. It turns out

that the authentication on the iPhone took 9.02 seconds on

average while on Macbook it is 8.65 seconds. The third

source is the time our app spends on monitoring the whole

file-transfer process through AirDrop, which was evaluated

by comparing the delays observed with and without our

protection. Specifically, we measured the time AirDrop took

to deliver the files of different sizes (50, 100, 200, 400,

600, 800 MB and 1 GB), first under the protection of the

monitor and then not. Each file was transferred 10 times on

both iPhone and Macbook and the total delay was averaged

over all the measurements of the time consumed. This

study demonstrates that the overheads of our approach are

completely negligible (Table V), which were found to be

overshadowed by the variations of the file transfer times.

VI. DISCUSSION

Security of SPYC. Our experiment findings show that the

threat of the state-of-the-art voice transformation techniques

50MB 100MB 200MB 400MB 600MB 800MB 1GB
iOS 1.33% 0.71% -1.67% -0.12% -1.3% 0.82% -0.78%

Mac
OS X

2.22% -1.61% 1.05% -1.24% 0.78% 1.69% -0.27%

Table V: Performance overhead when transferring files of

different sizes

to our SPYC mechanism is limited. This conclusion, ap-

parently, is in conflict with the findings made in the prior

study [50], which shows that the voice morphing could cause

the voice-based authentication to fail in nearly 50% of the

cases. This discrepancy is mostly introduced by the differ-

ences in the experiment settings and application domains.

Specifically, the prior research considers the individuals

who are not very familiar with how the victim speaks (the

participants only learned the victim’s voice during the study),

and the authentication string is supposed to be spoken over

the noisy VoIP channel (different noise profiles used in the

study). Under this setting, the study shows that even in the

absence of the attack, almost 50% of times the participants

could not determine the authenticity of the voices [50]. By

comparison, SPYC is used between those who are familiar

with each other’s voice and also our design requires the

vouch (the recording of the user’s voice) to be downloaded

for verification, which minimizes the impacts of the channel

noise. Most importantly, we show that by carefully designing

the system and providing a bit more background information

to the user (e.g., expected voice quality, possible presence of

synthetic voices), voice-based authentication can still offer

effective protection against impersonation and MitM attacks.

Also it is important to note that the voice-morphing attack

is essentially a type of targeted attacks. As mentioned earlier

(Section V-B), the cost of the attack is substantial. Particularly

the high-quality voice samples are needed for 50 sentences.

Therefore we believe that the SPYC mechanism significantly

raises the bar to the attack on ZeroConf systems.

Limitations and future research. On the other hand, further

research is needed to improve our current design and

implementation. For example, the dictionary used in our study

has been carefully chosen to ensure that the words it includes

are both rare and distinct. However, they are real words and

there is a chance that people still say them. Alternatively we

could look at fake words with distinct pronunciations. How

to generate and select these words needs further investigation.

Also, a non-biometric solution to the certificate verification

problem should also be studied. One possibility is to let

the Apple user choose her own publishable identifiers, e.g.,

Facebook profile, personal website, etc., and include it as part

of her account information. During email communication

with her contacts, such information can be automatically

exchanged across different Apple devices. Further effort is

needed to find out how to make the approach work. Finally,

we strongly believe that given the fact that ZeroConf systems

today tend to be deployed in an untrusted environment,

guidelines should be in place to help the developers build

672672



such systems with proper protection, in line with the threat

it is facing.

VII. RELATED WORK

ZeroConf security. Security threats to Link-Local Multicast

Name Resolution (LLMNR), a ZeroConf protocol used

in Microsoft Windows, have been mentioned in technical

blogs [14], [15], [13], [19] and an IETF documentation [16].

Unlike Bonjour, LLMNR is not designed for automatic

service discovery, a common feature of a ZeroConf system.

Instead, it just supports name resolving [12], which is found

to be vulnerable to a DNS spoofing attack. By comparison,

our study on Bonjour also focuses on its service discovery

stage, particularly its automatic mechanism for conflict

resolving, which can be exploited by the adversary to

silently hijack the victim’s service name, and the fundamental

challenge in protecting it with TLS (Section III-C).

Bluetooth security. Related to Bluetooth ZeroConf is the

work [37], [36] on the security of the devices without input

capabilities (e.g., no keyboard, no display). Different from

the studies, our research is the first that investigated how

the Just Works and OOB (Section II) pairing modes [21] are

supported on Apple’s Core Bluetooth framework. Under the

framework, the actual pairing operations are transparent to

the app developers. However, we found that the insecure Just
Works mode is the default setting. This usability-orient design

(easing paring process) also makes the developer more likely

to choose the insecure mode within her apps (Section III-A).

Further we show that even under the OOB mode, a malicious

app on Macbook can still gain unauthorized access to the

service on an iPhone.

Authentication between devices. Techniques for authen-

tication between devices have been studied recently [41],

[46], [45], [32]: e.g., a two-factor authentication mechanism

based on ambient sound [41], barcode scanning [46], shaking

devices together [45], sharing radio environment [32], etc.

These approaches are not suitable for authenticating the

devices transferring files over distance, in the presence of

the adversary.

Most related to our work is the technique that enables the

user to authenticate herself by speaking binary code or PGP

words over the VoIP channel [24], [17], [39], [38]. It is used

in Zfone [25], a secure VoIP software. This type of voice-

based authentication [35] is found to be vulnerable to the

voice reordering attacks and the voice morphing attack [50],

[47]. By comparison, SPYC (Section IV-B) is designed to

address such threats: it utilizes rare or fake words (rather than

the common PGP words and binary) to defeat the reordering

attack and requires the user to download the vouch (voice

recording) to authenticate the certificate owner, which avoids

the noise introduced by the channel. This approach, together

with our unique conflict detection approach (Section IV-A),

is found to be resilient to those attacks. Also importantly, our

study shows that a carefully-designed voice based approach

can still provide effective protection in practice.

TLS security. Prior research [44], [51], [48], [30], [33],

[31] demonstrates the cryptographic or implementation flaws

within TLS systems: e.g., the server’s certificate is not verified

properly by the apps [33] or browsers [31]. However, our

work is the first that demonstrates the difficulty in linking

a human to her certificate (Section III-C), which makes a

certificate hard to verify. This is found to be fundamental

for authenticating devices under the ZeroConf setting.

VIII. CONCLUSION

In this paper, we describe the first systematic study on the

security protection of Apple ZeroConf systems, which reveals

that the security protection within these systems is either not

in place at all or ineffective, allowing the adversary to get

access to sensitive user data. Addressing such security risks is

nontrivial, due to the challenge in binding a human individual

to her certificate. Our solution includes a conflict detection

technique and SPYC, a voice-based approach designed to

be convenient to use and effective against speech synthesis

attacks. We implemented our techniques in AirDrop and

evaluated its usability and effectiveness through user studies.

Our research shows that a well-designed voice authentication

can still offer effective protection, in spite of the progress

made on speech synthesis. Moving forward, we believe that

our findings and techniques will contribute to better designs

of ZeroConf systems, enhancing their security protection

while keeping them zero-configured.
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