
42 March/April 2017 Copublished by the IEEE Computer and Reliability Societies 1540-7993/17/$33.00 © 2017 IEEE

IEEE SYMPOSIUM ON SECURITY AND PRIVACY

Xiaolong Bai | Tsinghua University
Luyi Xing, Nan Zhang, and XiaoFeng Wang | Indiana University Bloomington
Xiaojing Liao | Georgia Tech
Tongxin Li | Peking University
Shi-Min Hu | Tsinghua University

Usability-oriented zero confi guration (ZeroConf) designs, with automatic service discovery “plug-and-
play” techniques, give rise to security risks. A study focusing on Apple—a major proponent of ZeroConf—
brings to light a disturbing lack of security: major ZeroConf components are mostly unprotected, and
popular apps and system services are vulnerable to man-in-the-middle attacks.

W ith the proliferation of portable computing sys-
tems, such as tablets, smartphones, and other

Internet of � ings (IoT) devices, ordinary users face an
increasing burden to properly con� gure those devices
as they work together. In response to this utility chal-
lenge, major device manufacturers and so� ware ven-
dors, including Apple, Microso� , and Hewle� -Packard,
tend to build their systems in a “plug-and-play” fashion,
using zero con� guration (ZeroConf) techniques. For
example, the AirDrop service on iPhone, once activated,
automatically detects a nearby Apple device running
the service to transfer documents or photos. Such Zero-
Conf techniques can automatically assign IP addresses
to devices, resolve hostnames of other devices, and dis-
cover available services on the local network. In addition
to those working on the IP network, similar techniques
have been developed for automatic service discovery on
other channels—Bluetooth in particular.1

When the design pendulum swings toward usabil-
ity, concerns arise as to whether the system has been

adequately protected. To understand whether the pro-
tection those systems receive is commensurate with the
threats they’re facing, we performed a security analysis
on popular ZeroConf systems on Apple iOS and Mac
OS X platforms. We focus on Apple because it’s a main
advocate of ZeroConf techniques and is known for its
rigorous security control. In our study, we inspected
popular apps and system services to understand whether
they’re properly guarded against realistic a� acks.

Given the strong demand for ZeroConf techniques,
it’s critical to come up with usable solutions to address
their security risks. We made a � rst step toward this
end. We � rst designed a con� ict detection technique
that checks whether a ZeroConf network is a� ack
free. And then we proposed a more generic solution,
called Speak Out Your Certi� cate (SPYC), that binds
an Apple account certi� cate to its human owner. We
analyzed the SPYC’s security design and evaluated the
mechanism’s usability and security through two human
subject studies with 60 participants.

Apple ZeroConf Holes:
How Hackers Can Steal iPhone Photos

www.computer.org/security� 43

Background
The concept of zero configuration (www.zeroconf.org)
was first defined over the IP network to set up a network
without manual configuration. To this end, techniques
were developed to self-assign IP addresses to networked
devices; resolve conflicts; announce a hostname and its
IP address; and automatically discover services of inter-
est broadcasted by other devices, letting users choose
services through browsing. Later, automatic service
discovery was applied to bootstrap the devices running
on other channels. We present two examples to show
how ZeroConf works—Bluetooth low-energy (BLE)
service discovery and IP service discovery. (For more
information on ZeroConf and Bluetooth security, see
the sidebar.)

First, BLE, a new Bluetooth technology, has been
incorporated into iOS and OS X. BLE communication
involves two main actors: a server that advertises and
provides services and a client that discovers and uses
these services. Each actor is identified by a universally
unique identifier (UUID).

For the client to get services from the server, the two
devices need to pair, a process that establishes a shared
secret between them. This shared secret is used for
authentication—that is, whoever possesses this secret is
the right party. Traditionally, to pair, users are required
to manually enter a PIN code. BLE comes with several
new ZeroConf pairing methods that don’t require such

manual configuration. One pairing method, Just Works,
enables a client to directly pair with a server. Another pair-
ing method, out of band (OOB), automatically exchanges
shared secrets in channels other than Bluetooth, for
instance, through near-field communication or Apple’s
iCloud account. Apple’s Core Bluetooth framework fur-
ther hides the details of the pairing from both users and
developers, which by default, takes care of the pairing pro-
cess, easing both usage and development burdens.

Second, we look at IP service discovery. A prominent
example of ZeroConf on the IP network is Apple’s Bon-
jour protocol, which devices use to publish and discover
services in a LAN. Bonjour assigns IP addresses and
hostnames to devices without users’ manual configura-
tion and enables devices to automatically discover avail-
able services in a local network. All the user needs to do
is choose, from a list, the service he or she wants to use.

Every service on a device has a unique service
instance name, and every device is identified by its host-
name. As an example, when publishing an AirDrop ser-
vice, a Bonjour server broadcasts to the local network
to register its unique service instance name, for exam-
ple, 9c5e3d2, and hostname, for example, Jeffs-iPhone,
which enables other devices to discover and access it.

A Bonjour client must go through two phases, dis-
covery and resolution, to find and access a service of
interest. In the discovery phase, the client broadcasts
discovery requests to look for services of a specific

Related Work on ZeroConf and Bluetooth Security

Security threats affecting Link-Local Multicast Name Resolution
(LLMNR), a zero configuration (ZeroConf) protocol used in Micro
soft Windows, have been mentioned in technical blogs1–4 and
Internet Engineering Task Force documentation.5 Unlike Bonjour,
LLMNR isn’t designed for automatic service discovery but instead
just supports name resolution.6 In addition to spoofing name reso-
lution, our study on Bonjour also focuses on the service discovery
stage and the fundamental challenge in protecting it with TLS.

Related to Bluetooth ZeroConf are works on the security of
the devices without input capabilities (for instance, no keyboard
or display).7,8 However, our research is the first to investigate how
the Just Works and out-of-band pairing modes are supported on
Apple’s Core Bluetooth framework.9

References
1.	 J. Sternstein, “Local Network Attacks: LLMNR and NBT-NS Poi-

soning,” Stern Security, 16 Nov. 2013; www.sternsecurity.com
/blog/local-network-attacks-llmnr-and-nbt-ns-poisoning.

2.	 “Local Network Vulnerabilities—LLMNR and NBT-NS Poisoning,”
SureCloud Newsletter, 9 Mar. 2015; www.surecloud.com/newsletter

/local-network-vulnerabilities-llmnr-and-nbt-ns-poisoning.
3.	 “LLMNR Spoofer,” Rapid7 Vulnerability & Exploit Database; www

.rapid7.com/db/modules/auxiliary/spoof/llmnr/llmnr_response.
4.	 “Responder,” Spider Labs; github.com/SpiderLabs/Responder.
5.	 H. Rafiee, “Multicast DNS (mDNS) Threat Model and Security

Consideration,” Internet Eng. Task Force, 10 June 2014; tools.ietf
.org/html/draft-rafiee-dnssd-mdns-threatmodel-00.

6.	 M. Krochmal, “LLMNR, mDNS and mDNS Responders in
Windows,” Apple Mailing Lists, 16 Apr. 2004; lists.apple.com
/archives/rendezvous-dev/2004/Apr/msg00031.html.

7.	 K. Hypponen and K.M. Haataja, “Nino Man-in-the-Middle
Attack on Bluetooth Secure Simple Pairing,” Proc. 3rd IEEE/IFIP
International Conf. Central Asia (ICI 07), 2007, pp. 1–5.

8.	 K.M. Haataja and K. Hypponen, “Man-in-the-Middle Attacks
on Bluetooth: A Comparative Analysis, a Novel Attack, and
Countermeasures,” Proc. 3rd Int’l Symp. Communications, Control
and Signal Processing (ISCCSP 08), 2008, pp. 1096–1102.

9.	 “Security, Bluetooth Smart (Low Energy),” Bluetooth, 2015;
developer.b luetooth.org/TechnologyOver view/Pages
/LE-Security.aspx.

44	 IEEE Security & Privacy� March/April 2017

IEEE SYMPOSIUM ON SECURITY AND PRIVACY

type, for instance, AirDrop. The Bonjour server—for
instance, Jeff ’s iPhone—then responds with its ser-
vice instance name, 9c5e3d2. Next, in the resolution
phase, the client broadcasts again to query the host-
name and IP address of the server of interest. With the
IP address, the client can connect to the server and use
its service. This resolution phase occurs each time the
service instance name is used to find the server’s current
address and port number. Apple recommends saving
the service instance name discovered (for instance, “HP
Printer [928FE5]” of an HP printer), because it’s rela-
tively stable, unlike hostnames, IP addresses, and so on,
which change frequently. Figure 1 illustrates the process
of Bonjour service discovery.

In our adversary model, we assume that the attacker
has already infected a device with malware, in an attempt
to use the device to collect sensitive information from
other uninfected devices. Such an adversary could not
only listen on the communication channel (for example,
BLE, LAN, or Wi-Fi direct) but also actively send out
messages to impersonate a legitimate and uninfected
device. We later demonstrate that such an adversary
can perform a man-in-the-middle (MITM) attack,
intercepting data transferred between nearby uninfected
devices, although the infected device isn’t the right
data recipient. On the other hand, we don’t consider a
targeted attack on owners of an uninfected device, in
which an adversary studies the owners’ behavior and
background, or even uses social engineering to collect
information about them.

Understanding Apple ZeroConf
We conducted a security analysis on popular Zero-
Conf Apple services and apps to understand whether

they’re properly protected and, if not, which technical
hurdles must be overcome to put protection in place.
Our study reveals that most Apple ZeroConf systems,
including Handoff, printer discovery, AirDrop, and
other high-profile apps, are unguarded, subject to vari-
ous MITM or data-stealing attacks.

Breaking Bluetooth ZeroConf
Apple integrates BLE ZeroConf techniques into its
frameworks and system services. Many popular apps
and services have adopted these techniques to improve
usability. However, our study shows that their service
discovery and pairing methods are often problematic,
making many Apple apps and system services vulner-
able to MITM attacks. Here, we discuss two examples.

Insecure pairing. Apple’s Core Bluetooth framework
lets iOS and Mac apps automatically discover and pair
with other BLE devices. To ease the development pro-
cess, this framework hides low-level BLE details from
developers, such as which pairing mode to choose. Its
default pairing mode (an abstraction of Just Works) is
also designed to reduce users’ burden, avoiding manual
input of PINs (like traditional Bluetooth). We found
that this default mode doesn’t authenticate the client
and the server. Therefore, apps adopting this frame-
work are typically unprotected. For example, we stud-
ied Scribe, a free app that transfers a copied item from
Mac to iPhone, which we found was vulnerable to
MITM attacks.2

Attacking Handoff. Unlike Just Works, the OOB mech-
anism lets ZeroConf devices authenticate each other
over the BLE channel. A prominent example is Apple

Figure 1. Bonjour service discovery and host resolution. In the discovery phase, the client broadcasts to request the server’s
service instance name. In the resolution phase, the client broadcasts again to query the server’s hostname and IP address.

1. Service request Anyone provides service of AirDrop?

2. Service response AirDrop service instance: 9c5e3d2

3. Hostname request Where is AirDrop service instance 9c5e3d2?

4. Hostname response It is on Je�s-iPhone.local: 8770

5. IP address request What’s the IP address of Je�s-iPhone.local?

6. IP address response Its IP address is fe80::xxxx

Discovery

Resolution

www.computer.org/security� 45

Handoff, a service that lets iOS and OS X synchro-
nize data through BLE without configuration. Pairing
between the devices happens through OOB: when users
log in to their iCloud account on their Mac or iPhone,
the devices’ UUIDs and credentials are exchanged
through their account to ensure that only authorized
devices are paired.

The problem is that data synchronization should
happen only between specific server/client apps, but
the Apple’s ZeroConf design doesn’t provide authenti-
cation at the app level. As a result, any advertised BLE
service on the iPhone is completely exposed to any
BLE-capable app on the Mac. Specifically, we success-
fully exploited the Apple Notification Center Service
(ANCS) on the iPhone using a sandboxed Mac app.
iPhone’s ANCS is responsible for managing all notifica-
tions. In the attack, as soon as a Bluetooth connection
is established between the Mac and the iPhone (which
happens when the user launches a Handoff process with
the Handoff setting on), the attack app can discover
the advertised ANCS service on the phone. By regis-
tering with the ANCS service, the attacker is informed
whenever a notification appears on the iPhone and then
acquires the notification from it. In this way, we found
that the sandboxed app, with only the Bluetooth per-
mission, stole all notifications from the iPhone, includ-
ing SMS, emails, and instant messages. Such a malicious
app bypassed the vetting of Apple’s Mac App Store and
got published. A demo is online (sites.google.com/site
/applezeroconf).

After we reported our findings to Apple, it decided to
discontinue support for transferring iOS notifications
to Mac OS in the versions following 10.10.4.

Exploiting File-Sharing Apps
An important support provided by ZeroConf techniques
is file sharing between devices, such as Macbook and
iPhone, across an ad hoc network (local Wi-Fi network
or peer-to-peer Wi-Fi direct connections) when the Inter-
net is unavailable or considered to be less economical for
the amount of data to be transferred. Apple provides an
easy-to-use ZeroConf framework for file-sharing apps,
called Multipeer Connectivity (MC; developer.apple
.com/reference/multipeerconnectivity), which supports
automatic service advertisement, discovery, target host
resolution, and file transfer between devices across Wi-Fi
and Bluetooth.

Typically, the file receiver device runs an MC adver-
tiser interface to advertise an identifier object peerID
and other information, which is picked up by the sender
running another MC browser interface. The problem
here is that an attack device can also browse and acquire
the advertised peerID of a victim receiver, and then
launch a service using exactly the same peerID object,

to impersonate the receiver to the sender. Furthermore,
the browser interface on the sender side considers the
discovered peerID from the attacker as an update to the
existing peerID from the victim receiver. Consequently,
it will map this peerID to the attacker’s IP address,
enabling MITM attacks.

We also found that some file-sharing apps imple-
ment their own ZeroConf capabilities, which become
necessary when file transfer needs to happen across
platforms and therefore can’t rely solely on Apple’s ser-
vice. A prominent example is Filedrop, a popular paid
app designed to quickly share documents among iOS,
Mac, Android, and Windows devices in a Wi-Fi ad hoc
network. We found that although the app provides
cryptographic protection for the file transfer process, it’s
still vulnerable to MITM attacks, which highlights the
challenge in protecting an automatic, self-configured
service in the absence of a preshared secret. Details of
our attacks on these popular file-sharing apps, including
Filedrop and the popular instant messaging app Ten-
cent QQ, are explained elsewhere.2

Cracking Bonjour Protection
As we mentioned, Bonjour is a major ZeroConf
mechanism developed by Apple. It supports auto-
matic service discovery and hostname/IP resolution.
In the discovery phase, the Bonjour client broadcasts
requests to discover services of specific types (for
instance, printing), then the server (for instance, an HP
printer) responds with a service instance name such as
“HP Printer [928FE5].” In the resolution step, the cli-
ent resolves the server’s IP address and hostname, for
instance, LaserJet.local.

A problem for this fully automated mechanism is
that, again, little protection is in place to ensure that the
parties involved properly authenticate each other. With
this weakness, the mechanism is still used in a not-fully-
trusted environment, in the absence of additional secu-
rity measures. Actually, even when people want to
protect it, it’s difficult to provide authentication on top
of Bonjour without preconfiguring a shared secret, as we
found in our research. Here, we elaborate on our find-
ings through two examples of popular Bonjour-capable
systems: automatic printer discovery and AirDrop.

Misleading printer discovery. Today, all major printer ven-
dors support Bonjour-based automatic printer discov-
ery. More specifically, whenever Mac users search their
local network for printers, their computer runs Bonjour
to find printer service instances from which the users can
choose. A selected printer has its service instance name
(for example, “HP Printer [928FE5]”) saved on the Mac,
which enables users to access the printer without going
through the service discovery step again. On the other

46	 IEEE Security & Privacy� March/April 2017

IEEE SYMPOSIUM ON SECURITY AND PRIVACY

hand, each time a user prints through the service instance
name, the target printer’s hostname and IP address must
be resolved, using the printer’s service instance name. We
confirmed that this process can be manipulated to steal
the document the user intends to print.

The attack happens when a malicious host, such as a
compromised Mac in the network, broadcasts to publish
and register a service with an existing printer’s instance
name, in this case, “HP Printer [928FE5].” Neverthe-
less, each device observes the response and automati-
cally caches it (the mapping between a service type to a
service instance), and when a conflict is discovered (the
printer finds that the response carries its own instance
name), the printer automatically resolves the con-
flict by changing its own instance name—“HP Printer
[928FE5] (2).” The problem is that the Mac keeping the
printer’s instance name doesn’t know about that. When
the Mac uses the printer, the printer won’t respond to
the request sent out to resolve the printer’s hostname
and IP because the instance name on the request no
longer belongs to it. The malicious host, however, will
reply with its IP. As a result, the user’s document will be
sent to the malicious host, which can forward the docu-
ment to the original printer, silently serving as a man in
the middle.

We implemented the attack on a real-world orga-
nizational network. Our approach successfully inter-
cepted documents to be printed out on the target
printer. Note that this problem isn’t limited to printer
discovery: most apps and systems using Bonjour don’t
have protection at all and therefore are equally vulnera-
ble to such an MITM attack. An example is the popular
PhotoSync app, whose communication between a Mac
and an iPhone for synchronizing photos is exploited
by our MITM attack, stealing the photos exchanged
across the devices.

Hacking AirDrop. A unique feature of Bonjour is that all
identifiers of a device using the mechanism, including
its service instance name, hostname, and IP address, are
generated dynamically and can be changed at any time.
This feature enables automatic configuration of an ad
hoc network through which devices easily discover each
other and establishes communication channels among
them. However, it also makes device authentication dif-
ficult. A prominent example here is Apple AirDrop, an
ad hoc service that supports short-range exchange of
documents between OS X and iOS devices. The ser-
vice is built on top of Bonjour, enhancing the ZeroConf
mechanism with TLS-based security protection.

We revealed the AirDrop process through reverse
engineering and inspecting the system component for
AirDrop. It turns out that, after the Bonjour discovery
and resolution steps, the AirDrop sender running on
iOS or OS X discovers the service instance name, IP,
and port of another device supporting AirDrop (the
server). Then, the sender establishes a TLS connection
with the server to collect its device name (a name for the
user to recognize the part, such as Jeff ’s iPhone), Apple
account information, and so forth. This TLS connec-
tion employs Apple’s public-key infrastructure (PKI)
to encrypt the data transferred between the devices.
Each device uses a user’s Apple-signed certificate for
authentication and encryption during the TLS connec-
tion. The name and information transferred during the
connection are used to build a list of discovered devices
from which the user chooses one to drop documents.
After the user chooses the receiver, the documents are
transferred through the TLS connection, and the server
confirms the transfer’s success.

With TLS protection, it’s less clear how the sender
verifies the server’s TLS certificate, which belongs to
the device owner’s Apple account (Apple ID). Because

Figure 2. Apple certificate issued to an Apple account. The certificate is bound to a random string prefixed with com.apple.idms.appleid.prd.

www.computer.org/security� 47

none of the server device’s identifiers (service instance
name, device name, IP, and so on) are meant for
long-term use, they can be changed on the fly and there-
fore can’t be bound to the user’s TLS certificate. Unlike
a website, whose certificate uses the site’s hostname (for
instance, apple.com) that needs to be checked during a
TLS connection, the Apple account of one individual
doesn’t have identity information that other people can
easily verify. Actually, as we found out, what’s bound to
a user’s Apple certificate (used for the TLS connection)
is a random string prefixed with com.apple.idms.appleid
.prd (see Figure 2), which is supposed to be related to
the user’s Apple ID. This random string is hard for other
users to manually check whether it indeed belongs to
the intended user.

Fundamentally, linking a human to a certificate is
complicated, due to the challenge in finding any identi-
fiable information both well-known and unique: a name
can be duplicate, and date of birth and Social Security
number have privacy implications—people might not
want to share them with a party with whom they just
want to share a file. We found that Apple binds users’
Apple ID, denoted by an email address, to the afore-
mentioned random string in their certificates. However,
Apple’s design isn’t secure in practice; oftentimes, Apple
users don’t save known people’s Apple IDs into con-
tacts. Indeed, in our measurement study, we checked
all 1,230 contacts saved on nine individuals’ iPhones.
It turns out that only 119 contacts (9.7 percent) out of
1,230 were saved with their Apple IDs.2

Although it’s highly likely for this identity check
to fail in practice, Apple still shows to users the list of
device names, even when the certificates involved can’t
be bound to any known contacts through the Apple IDs
(email addresses). Once users choose a device (through
the device’s name, like Jeff ’s iPhone), their documents
and photos will be transferred through the AirDrop
mechanism, even when the validity of the server’s cer-
tificate can’t be fully verified.

Exploiting this weakness, we successfully attacked
AirDrop. Specifically, the attack happens when the
attack device sends a response to the AirDrop client
during the first step of the Bonjour resolution phase,

to bind the service instance name of the real AirDrop
server to its own hostname (see Figure 3a). Note that
this resolution response can be unicast to the victim—
that is, the AirDrop client (the party that initiates the
AirDrop communication)—to avoid detection by the
server. After that, the TLS connection initiated by the
client will go to the attack device.

Alternatively, an attacker can cheat the AirDrop cli-
ent in the second step of resolution, binding the server’s
hostname to the attacker’s IP address (see Figure 3b).
Again, this network packet can be delivered through a
unicast channel, without exposure to the server. This,
again, will cause the TLS request from the client to go
to the attack device. In both cases, the attack device
impersonates the server to the client, then connects to
the server to act as a man in the middle. Because users
have no way to find out whether they’re talking to the
right person during the process, they might choose the
wrong device on the list and send their documents and
photos to the attacker. A demo is online at sites.google
.com/site/applezeroconf.

Measurement
To find out the scope and magnitude of the security
weaknesses in ZeroConf systems, we performed a mea-
surement study, analyzing 61 popular Mac and iOS
apps designed to operate without configurations. Our
findings demonstrate the issue’s significance: a vast
majority (88.5 percent) of the apps we analyzed were
unprotected, even though the environment they work
in can’t be fully trusted. Examples of such apps and our
findings are summarized in Table 1.

Protecting Apple ZeroConf
Our security analysis shows that there’s significant mis-
alignment between the usability-oriented design that
characterizes existing Apple ZeroConf systems and the
security threats they face in practice.

To better protect the ZeroConf system without
undermining its usability, we developed a suite of novel
techniques. We first examine an optimistic approach in
which the device considers its operating environment
safe if the necessary condition of an impersonation or

Table 1. Summary of vulnerable apps.

ZeroConf channel No. vulnerable/sampled Sensitive information leaked App examples

Bluetooth low energy 10/13 Username and password for Mac OS X Near Lock

Multipeer connectivity 24/24 Files and photos transferred, and instant
message

Bluetooth U, Photo Transfer,
and AirDates

Bonjour 18/22 Files, directories and clipboard synced,
documents printed, and instant message

Copybin and Printer Pro Lite

Homegrown 2/2 Remote keyboard input and files transferred Remote Mouse and SHAREit

48	 IEEE Security & Privacy� March/April 2017

IEEE SYMPOSIUM ON SECURITY AND PRIVACY

MITM attack isn’t satisfied. A more generic solution
is to leverage Apple’s PKI to authenticate the parties
involved in ZeroConf operations. Our research shows
where the existing PKI fails and how to bridge the gap
and make it work on today’s ZeroConf systems.

Conflict Detection
A key observation from our security analysis of Zero-
Conf systems is that all attempts to impersonate an
existing device involve hijacking that device’s service
instance name or hostname. This will cause a con-
flict observable to the party searching for the victim
(the device being impersonated) when the victim also
responds to the party’s request and the adversary can’t
disrupt the communication between the party and the
victim. Because identity hijacking is a necessary condi-
tion for the impersonation and MITM attacks, and the
conflict is inevitable assuming no disruption and the
victim device is always on, we can conclude that a Zero-
Conf network is attack free if no conflict is observed.
This observation leads to a conflict detection design and
its implementations on OS X and iOS, which defeats
these attacks and also fully preserves the existing Zero-
Conf systems’ usability.2

Speaking Out Your Certificate
The conflict detection techniques are completely auto-
matic, fully preserving the zero configuration property of

existing systems. However, in the presence of a conflict,
it can’t help users identify the trusted party to connect to.
In addition, a more fundamental solution against imper-
sonation and MITM attacks should rely on authentica-
tion of the parties involved in the communication. In the
absence of a shared secret (which needs to be configured
across multiple devices), apparently the best solution is
to leverage Apple’s PKI, using each party’s Apple cer-
tificate to establish a secure channel between authen-
ticated peers. However, this treatment turns out to be
more complicated than it appears: in all the data-sharing
cases mentioned here, only Handoff can be potentially
secured by authenticating two apps (across iPhone and
Mac) with their app signatures; all other cases involve
users’ Apple account certificate. The challenge here is
properly verifying one’s ownership of a certificate, which
hasn’t been addressed by existing techniques.

To link a certificate to a user, we need to attach to
the certificate some identifiable but nonsensitive user
information, which must also be well-known to his or
her contacts. Our idea, named SPYC vouch, is to use
voice biometrics to tie users’ certificate to their identity,
assuming that the parties verifying the certificate know
their voice.2 Specifically, we developed a technique that
lets users “speak out” their certificates and use the voice
recording to vouch for the relation between the certif-
icate and their identity. To verify the certificate, users
must check whether the voice indeed belongs to the
person they know as well as whether the certificate con-
tent has been correctly spoken. The logic here is that, to
impersonate someone else, an attacker needs a victim’s
cooperation to speak out the attacker’s certificate. As a
result, the attempt to deceive other parties into using an
attacker’s certificate as the victim’s will fail if those par-
ties know the victim’s voice.

Lessons Learned
We evaluated our protection techniques in two human
subject studies involving 60 participants and showed
that speaker identification using SPYC vouch is reliable,
convenient, and resilient to vouch-forging attacks.2

Our analysis highlights the fundamental security
challenges underlying ZeroConf techniques: in the
absence of any preconfigured secrets across differ-
ent devices, it’s difficult to provide proper authentica-
tion. Although the problem is caused by the systems’
usability-oriented design, the lack of effective protection
today comes largely from the inadequate assessment
of the security risks these systems face. Although their
designs are meant for operating in a friendly setting,
ZeroConf systems like AirDrop are actually used in pub-
lic environments, such as airports, where the security
guarantee becomes hard to assure. An important lesson
learned from such a misalignment is that the design of a

Figure 3. Attacks on AirDrop. (a) This attack happens when the attack device
sends a response to the AirDrop client during the first step of the Bonjour
resolution phase, binding the service instance name of the real AirDrop server
to its own hostname. (b) Alternatively, an attacker can cheat the AirDrop client
in the second step of resolution, binding the server’s hostname to the attacker’s
IP address. In both cases, the attack device impersonates the server to the client,
then connects to the server to act as a man in the middle.

(a)

(b)

Hostname response: service instance 9c5e3d2
 is on Attacker-iPhone.local

IP address response: IP of Je�s-iPhone.local is fe80:: bbbb

Client Server
IP address response:

IP of Je�s-iPhone.local is fe80:: aaaa

Client

Attacker

Attacker

Server

Hostname response: service instance 9c5e3d2
 is on Je�s-iPhone.local

www.computer.org/security� 49

usability-oriented system must be predicated on careful
evaluation of the security threats the system faces as well
as a clear indication of when it can be safely used and
when it can’t. We strongly believe that guidelines should
be in place to help developers build such systems with
proper protection in line with the security risks.

We also highlight the urgent need to develop
effective authentication technologies for ZeroConf
systems. Our SPYC design already demonstrates pre-
liminary success. In general, these technologies should
be intuitive, avoiding complicated configurations a
ZeroConf system isn’t supposed to have. A follow-up
effort is expected to find the right balance between
security and usability.

M ore research is needed to improve our current
design and implementation of the protection.

For example, a non-biometric solution to the certificate
verification problem should be studied. One possibil-
ity is to let Apple users choose their own publishable
identifiers, such as Facebook profiles, personal websites,
and so on, and include it as part of their account infor-
mation. During email communication with their con-
tacts, such information can be automatically exchanged
across different Apple devices. Further effort is needed
to find out how to make the approach work.

Acknowledgments
The two lead authors, Xiaolong Bai and Luyi Xing, are listed
alphabetically.

References
1.	 T. Smith, “Sony Preps ZeroConf-Style Blue-

tooth Tech,” The Register, 18 June 2003; www
. t h e r e g i s t e r . c o. u k / 2 0 0 3 / 0 6 / 1 8 / s o n y _ p r e p s
_zeroconfstyle_bluetooth_tech.

2.	 X. Bai et al., “Staying Secure and Unprepared: Under-
standing and Mitigating the Security Risks of Apple Zero-
Conf,” Proc. IEEE Symp. Security and Privacy (SP 16),
2016; doi:10.1109/SP.2016.45.

Xiaolong Bai is a PhD candidate in the Department of
Computer Science and Technology at Tsinghua Uni-
versity. His research interests include finding and
mitigating new vulnerabilities in mobile systems,
including Android and iOS/OS X. Contact him at
bxl12@mails.tsinghua.edu.cn.

Luyi Xing is a researcher in the System Security Lab at
Indiana University Bloomington. His research inter-
ests include finding previously unknown logic and
architecture problems in modern systems, including
iOS, OS X, and Android, and high-profile applications

on them. Xing received a PhD in security informatics
from Indiana University Bloomington. Contact him
at luyixing@indiana.edu.

Nan Zhang is a PhD candidate in the System Security
Lab at Indiana University Bloomington. His research
interests include system security and mobile secu-
rity, including finding vulnerabilities and designing
defense techniques on Android, iOS, and Internet of
Things systems. Contact him at nz3@indiana.edu.

XiaoFeng Wang is a professor in the School of Informat-
ics and Computing at Indiana University Blooming-
ton. His work focuses on cloud and mobile security
as well as data privacy, particularly the privacy chal-
lenges in large-scale analysis and dissemination of
human genomic data. Wang received a PhD in elec-
trical and computer engineering from Carnegie Mel-
lon University. He’s a recipient of the 2011 Award for
Outstanding Research in Privacy Enhancing Technol-
ogies (the PET Award) and the Best Practical Paper
Award at the 32nd IEEE Symposium on Security and
Privacy. Contact him at xw7@indiana.edu.

Xiaojing Liao is a PhD candidate in the School of Electri-
cal and Computer Engineering at Georgia Tech and
a member of the Communications Assurance and
Performance (CAP) group. Her research interests
include network security, online crime modeling, and
cyber-physical system privacy. She’s a student mem-
ber of IEEE. Contact her at xliao@gatech.edu.

Tongxin Li is a PhD candidate in the Department of
Computer Science at Peking University. His research
interest is mobile security, including program analy-
sis and vulnerability discovery on Android and iOS.
Contact him at litongxin@pku.edu.cn.

Shi-Min Hu is a professor in the Department of Com-
puter Science and Technology at Tsinghua University.
His research interests include system software and
security, computer graphics, and computer vision. Hu
received a PhD in mathematics from Zhejiang Univer-
sity. He’s editor in chief of Computational Visual Media
and on the editorial board of several journals, includ-
ing IEEE Transactions on Visualization and Computer
Graphics, Computer Aided Design, and Computer &
Graphics. He’s a Senior Member of IEEE and ACM.
Contact him at shimin@tsinghua.edu.cn.

