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Abstract

On modern operating systems, applications under the same user
are separated from each other, for the purpose of protecting them
against malware and compromised programs. Given the complex-
ity of today’s OSes, less clear is whether such isolation is effective
against different kind of cross-app resource access attacks (called
XARA in our research). To better understand the problem, on the
less-studied Apple platforms, we conducted a systematic security
analysis on MAC OS X and iOS. Our research leads to the discov-
ery of a series of high-impact security weaknesses, which enable
a sandboxed malicious app, approved by the Apple Stores, to gain
unauthorized access to other apps’ sensitive data. More specifi-
cally, we found that the inter-app interaction services, including
the keychain, WebSocket and NSConnection on OS X and URL
Scheme on OS X and i0S, can all be exploited by the malware
to steal such confidential information as the passwords for iCloud,
email and bank, and the secret token of Evernote. Further, the de-
sign of the App sandbox on OS X was found to be vulnerable, ex-
posing an app’s private directory to the sandboxed malware that hi-
jacks its Apple Bundle ID. As a result, sensitive user data, like the
notes and user contacts under Evernote and photos under WeChat,
have all been disclosed. Fundamentally, these problems are caused
by the lack of app-to-app and app-to-OS authentications. To bet-
ter understand their impacts, we developed a scanner that automat-
ically analyzes the binaries of OS X and iOS apps to determine
whether proper protection is missing in their code. Running it on
hundreds of binaries, we confirmed the pervasiveness of the weak-
nesses among high-impact Apple apps. Since the issues may not be
easily fixed, we built a simple program that detects exploit attempts
on OS X, helping protect vulnerable apps before the problems can
be fully addressed. We further discuss the insights from this study
and the lessons learnt for building a securer system.
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1. INTRODUCTION

The pervasiveness of computing technologies and emerging se-
curity threats they are facing have profoundly changed the security
designs of modern operating systems (OS). Moving away from the
traditional threat model in which all applications (app for short)
under the same user trust each other with their information assets,
today’s OSes tend to separate those apps and their resources, in an
attempt to prevent a malicious or compromised program from caus-
ing damage to others. This has been achieved through a variety of
app isolation mechanisms: each app is confined in its partition with
a minimum set of privileges, called sandbox, and needs to explic-
itly require additional capabilities (e.g., access to camera, audio,
etc.) from the OS or the user. Such a security model has been
adopted by most mainstream systems, including Windows, MAC
OS X, Android, i0S, etc. With its popularity, the effectiveness of
the technique, however, has still not been fully understood, due to
the complexity of a modern OS, which makes comprehensive pro-
tection challenging.

Unauthorized cross-app resource access. Recent studies show
that sandboxed Android apps can still get access to other apps’ re-
sources and acquire system capabilities without proper authoriza-
tion [28]. For example, the developer could accidentally make
public an app’s interface for interprocess communication (IPC),
through which its internal service or activity can be triggered by
a message (called Intent) from an unauthorized app to acquire sen-
sitive data [25] or elevated privileges (e.g., access to audio, GPS,
etc.) [18, 24, 20]. Fundamentally, the problem is caused by the mi-
gration of the threat model and the transitional pain that it comes
with: both the OS designer and the app developer are less used
to the mindset that all apps, even when they all belong to the same
user, should treat each other as untrusted, and proper security checks
should always be performed in all aspects of app-to-app and app-
to-system interactions.

In those attacks, malicious code under some isolation constraints
manages to gain access to other apps’ resources or affect the way
they are used by legitimate apps, when it is not authorized to do so.
We call such a security threat unauthorized cross-app resource ac-
cess or XARA. Although specific instances of XARA are found on
the Android platform, less known is whether it is indeed a generic
issue. Particularly, we do not know whether app isolation works
effectively on MAC OS X and i0S, which are widely considered
to be securer than Android. These operating systems offer unique
mechanisms to confine apps and support cross-app interactions,



very different from those provided by Android. Specifically, the
construction of Apple sandboxes is significantly different from that
of Android, in which each app is given a unique User ID (UID),
allowing the Linux user protection to separate the apps. In con-
trast, an Apple app is identified by its Apple ID, which contains a
Bundle 1D (BID) token used by the OS to enforce sandbox poli-
cies. The uniqueness of the token is ensured by the Apple Store.
Also, OS X supports complicated cross-app resource sharing. For
example, its keychain service allows multiple apps to share cre-
dentials among them through an access-control list (Section 3.1),
which is not supported on other systems like Android. In addition
to cross-app resource sharing, other cross-app interactions, i.e., [IPC
on Apple platforms, also differ from those on Android. Examples
include NSConnection that shares objects between apps on OS X
and the URL Scheme uniquely associated with one single app, for
launching it with an URL!. So far, little has been done to under-
stand whether the construction of app isolation on Apple platforms
is secure and whether its cross-app mechanisms can bring in XARA
risks never known before.

Our work. We conducted the first study on the XARA risks of
Apple’s isolation mechanisms, and discovered surprising security-
critical vulnerabilities: major cross-app resource-sharing mecha-
nisms (such as keychain) and communication channels (including
WebSocket, NSConnection and Scheme) turn out to be insufficiently
protected by both the OS and the apps using them, allowing a mali-
cious program to steal from these apps sensitive user data; also the
BID-based sandbox construction is found to be less reliable than
expected, and its resource-sharing mechanism can be exploited by
the malicious app to break the sandbox confinement on OS X, gain-
ing full access to other apps’ directories (called container). Note
that not only does our attack code circumvent the OS-level protec-
tion but it can also get through the restrictive app vetting process of
the Apple Stores, completely defeating its multi-layer defense.
Looking into the root cause of those security flaws, we found that
in the most cases, neither the OS nor the vulnerable app properly
authenticates the party it interacts with. To understand the scope
and magnitude of this new XARA threat, we developed an ana-
lyzer for automatically inspecting Apple apps’ binaries to deter-
mine their susceptibility to the XARA threat, that is, whether they
perform security checks when using vulnerable resource-sharing
mechanisms and IPC channels, a necessary step that has never been
made clear by Apple. In our study, we ran the analyzer on 1,612
most popular MAC apps and 200 iOS apps, and found that more
than 88.6% of the apps using those mechanisms and channels are
completely exposed to the XARA attacks (Section 4.2), and ev-
ery app’s container directory has been fully disclosed. The conse-
quences are dire: for example, on the latest Mac OS X 10.10.3, our
sandboxed app successfully retrieved from the system’s keychain
the passwords and secret tokens of iCloud, email and all kinds of
social networks stored there by the system app Internet Accounts,
and bank and Gmail passwords from Google Chrome; from var-
ious IPC channels, we intercepted user passwords maintained by
the popular 1Password app (ranked 3rd by the MAC App Store)
and the secret token of Evernote (ranked 3rd in the free “Productiv-
ity” apps); also, through exploiting the BID vulnerability, our app
collected all the private notes under Evernote and all the photos un-
der WeChat. We reported our findings to Apple and other software
vendors, who all acknowledged their importance. The video demos
of our attacks and our communication with the related parties are

'on Android, an Intent-based Scheme is different as it can be connected to
multiple apps, which the user can choose once the scheme is triggered.
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posted on a private website [15]>. We also built an app that captures
the attempts to exploit the weaknesses.

Our study also shows that this XARA hazard is indeed general,
across different platforms. Even though iOS drops many useful
functionalities of OS X (e.g., keychain’s access control list for shar-
ing passwords or tokens across apps) and therefore less vulnerable,
it is still not immune to the threat. Particularly, its major IPC chan-
nel, Scheme, is equally subject to the hijacking attack we discov-
ered on MAC OS X (Section 3.4). Further, the WebSocket problem
(Section 3.3) actually comes from HTMLS5, which happens when
a browser extension is connecting to a local program. We found
that the same attack can also succeed on iOS and Windows. In-
terestingly, compared with OS X and iOS, Android looks pretty
decent in terms of its protection against the XARA threat: at the
very least, it offers a mechanism to protect its Intent-based IPC,
through assigning a private attribute to the service and activity
or guarding them with permissions, which are missing on the Ap-
ple platforms. We further discuss the lessons learnt from our study,
particularly the need for clarifying the responsibilities for protect-
ing a cross-app mechanism between the OS provider and the app
developer, and present key principles for avoiding XARA pitfalls
when building new systems (Section 5).

Contributions. The contributions of the paper are outlined as fol-
lows:

o New understanding of the XARA threat. We are the first to iden-
tify the generality of the XARA problem and systematically inves-
tigate the threat on the Apple platforms. Our study brings to light
a series of unexpected, security-critical flaws that can be exploited
to circumvent Apple’s isolation protection and its App Store’s se-
curity vetting. The consequences of such attacks are devastating,
leading to complete disclosure of the most sensitive user informa-
tion (e.g., passwords) to a malicious app even when it is sandboxed.
Such findings, which we believe are just a tip of the iceberg, will
certainly inspire the follow-up research on other XARA hazards
across platforms. Most importantly, the new understanding about
the fundamental cause of the problem (Section 5) is invaluable to
the development of better app-isolation protection for future OSes.

o New effort to mitigate the threat. We developed new techniques
for identifying the apps vulnerable to the XARA threat, and the
attempts to exploit them during an operating system’s runtime.

Roadmap. The rest of the paper is organized as follows: Sec-
tion 2 provides the background information for our research and
the assumptions we made; Section 3 elaborates the security analy-
sis we performed on OS X and iOS, and the security problems we
discovered; Section 4 describes the design and implementation of
the automatic analyzer, the findings made by running the tool on
popular apps and the app-level mitigation we developed; Section 5
highlights the lessons learnt from our study; Section 6 reviews the
related prior research and Section 7 concludes the paper.

2. BACKGROUND

In this section, we describe how app isolation techniques work
on popular systems like Android, MAC OS X and iOS, the way they
handle inter-app communication and security risks that come with
such a strategy. Also, we present the adversary model underlying
our study.

App sandboxing. App sandboxing plays a critical role in the An-
droid security architecture. Each Android app is given a unique
UID and runs as the user. Sensitive resources are assigned to Linux
groups such as GPS, Audio, etc. This treatment automatically iso-

2We do not track the visitor.



lates one app from others under the Linux user and process protec-
tion. To access system resources, an app needs to request permis-
sions from the OS or the user. A permission can also be defined by
the app for sharing its resources with authorized parties (those with
the permission) through the interfaces like content providers, Intent
receiver, etc.

The Apple sandbox first appears on MAC OS X, which utilizes
the TrustedBSD mandatory access control framework to enforce
its security policies at the system-call level. Since OS X 10.7.5
Lion, all apps submitted to the MAC App Store are required to be
sandboxed, with some exceptions given to those that need to run as
native code. On the OS side, a service called Gatekeeper blocks
the apps not signed by either the Apple Store or a trusted devel-
oper from being installed®. This ensures that with proper security
configurations, most apps running on a MAC device are under the
sandbox confinement. In the meantime, OS X maintains its com-
patibility with the traditional OS security design, hosting trusted
native programs that run with the user’s privileges. On iOS, how-
ever, apps are much simpler (e.g., without intensive document op-
erations) and can therefore all be sandboxed.

Unlike Android, which isolates an app solely based upon its
UID, the Apple platforms just utilize UIDs to classify apps into
groups. For example, on OS X all the apps from the MAC app store
operate under the UID of the current OS user, and those on i0OS
under the user mobile. On these platforms, separation is actually
enforced through the TrustBSD’s API interpositions. Each app is
identified by its Apple ID, a two-part string that consists of a Team
ID Apple assigns to the app developer, and a Bundle ID supplied by
the developer: for example, A1B2C3D4E5.com.apple.mail
where the first part is the Team ID and the rest components form
the BID. Any app submitted to the Apple Stores goes through a ver-
ification process that among other things, ensures the uniqueness of
the app’s BID. On OS X, this identity also serves as the name of the
app’s container directory. Every sandboxed app on the Apple plat-
forms is given a container when it is first launched. The directory
is used to hold the app’s internal data and cannot be accessed by
other sandboxed apps from different developers.

An app within the sandbox has only limited privileges. By de-
fault, it can only read and write files within its container and some
public directories. This policy is enforced by checking the devel-
oper’s signature on the app against an access-control list (ACL)
associated with each directory (see Section 3.2). Also, it is not
allowed to access network sockets, built-in camera, microphone,
printer and other resources. Whenever use of such resources be-
comes necessary, the app explicitly requires them by declaring a
set of entitlements within its property file (called plist file, very
much like the Android manifest file). Each entitlement is a key-
value pair that identifies a specific capability (e.g., access to cam-
era). They are reviewed by the Apple Stores to determine whether
the capabilities should be granted. For some capabilities, such as
access to GPS locations, camera, etc., the OS further asks for the
user’s permission during the app’s runtime.

IPC on the Apple platforms. Among the small set of operations
that a sandboxed app is allowed to do by default is the capabili-
ties to perform some types of interprocess communication. OS X
supports a variety of IPC channels, including traditional UNIX
ones (e.g., pipe, UNIX domain socket, shared memory) and Apple-
specific mechanisms like distributed objects, NSConnection in par-
ticular, and URL schemes. More specifically, a sandboxed app,
without any additional permission, can create an NSConnection
server object, vend it and register with the OS the name of the ob-

3This setting can be turned off.
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ject. This allows another app (i.e., an NSConnection client) to com-
municate with the server after obtaining from the OS a proxy for
the server object using its name. Specifically, through the proxy, the
NSConnection client gets the vended object from the server. The
NSConnection mechanism allows the client to invoke methods of
the vended object and access its variables as if the object existed in
the client process. To this end, the client app needs to declare an en-
titlement com.apple.security.temporary-exception.mach-lookup.gl
obal-name in its plist.

Socket-based IPC is also available on OS X. To use it, sand-

boxed apps need to claim the network capability in their plists. An-
other unique IPC mechanism for both OS X and iOS is Scheme:
an app can invoke another specific app to work on a task with
a URL click if the latter registers with the OS the scheme part
of the URL. For example, the URL yelp://search?terms=
Coffee, once triggered, let one app launch the Yelp app to search
for “Coffee” nearby. Here, the “yelp://” partis a scheme. Al-
though this mechanism is also used on Android, which has been
implemented using Intent, it is different from that for OS X and
iOS since Apple’s OSes only allow one single app to be associated
with a scheme on a device, while on Android, the user is asked to
choose a scheme’s owner when there are more than one. This ma-
jor difference enables our scheme hijacking attack (Section 3.4)
which, however, does not pose a threat on Android. To register a
scheme, an Apple app needs to register it with the OS. This is done
on OS X and iOS by simply declaring the scheme in the app’s plist
file. Such a channel can be used by any sandboxed app without
specifying any entitlement.
Adversary model. In our research, we studied what an isolated
app can still do to collect sensitive data and utilize critical sources
that belong to other apps, when it is not entitled to do so. For this
purpose, we assume that malicious apps are submitted to the Apple
Stores, which puts them to the test of Apple’s restrictive review pro-
cess. In the case that they get published, the apps are supposed to
be installed by the user who also runs security-critical apps on her
device (laptop or smartphone). This is realistic, since apps down-
loaded from the Apple Stores are widely considered to be trusted,
and particularly, almost all of them are confined within the sand-
boxes. For the malware installed in this way, we assume that they
are isolated and only granted a small, inconspicuous set of capabil-
ities: in addition to what are offered by the OSes by default, they
may need the networking permission (only for the attack in Sec-
tion 3.3) or that for the IPC client (for the NSConnection attack).
Note that these entitlements are among the most innocent ones.

3. XARA MENACES

In our research, we conducted a systematic study on the XARA
threat over the Apple platforms, MAC OS X in particular. Our
focus is on how inter-app interaction channels and services are pro-
tected under the sandboxing model, and how isolation has been
enforced on untrusted apps. Following we elaborate our findings,
including the security-critical flaws we discovered in the OS X key-
chain, BID-based separation as well as various IPC channels, i.e.,
NSConnection, WebSocket and Scheme on both MAC OS X and
i0S. Note that all our attack apps were uploaded to the Apple App
Stores and passed their inspections®.

3.1 Password Stealing

On the Apple platforms, a sandboxed app by default is still al-
lowed to access some security-critical services. A prominent ex-

“To avoid causing damages to Apple users, after the apps were confirmed
to be approved, we immediately removed them from the Apple Store.



ample is Apple’s keychain. Keychain is Apple’s credential manage-
ment service, through which an app can store the user’s passwords,
secret keys and certificates there. These credentials will then be
automatically used by authorized apps after the user “unlocks” the
keychain through entering her password, in a way similar to the
transparent single-sign-on authentication (though more powerful)
from the user’s point of view. When the keychain is locked, all
the credentials there are encrypted and no one can access their con-
tent. The keychain service running on OS X is powerful, support-
ing multiple keychains, explicit and implicit unlocking and com-
plicated access control. Particularly, a default keychain is created
for each user account and serves most system services and many
popular apps. It is automatically unlocked whenever the user logs
in, if its password is identical to that for login.

Although keychain is not part of the Apple sandbox, it can be
viewed as a secure storage system that provides a strong isolation
between apps. Even when it is unlocked, each app cannot touch an-
other’s keychain item unless this is permitted by the item’s creator,
as specified by its ACL. For a sandboxed app, other apps’ items are
very much like being inside their individual container directories,
which it is not allowed to access. However, we show how a subtle
design weakness enables the malicious code to bypass the isolation
and steal user credentials from other apps.

Security weakness. The simplified keychain structure is illustrated

in Figure 1. Each keychain item carries the credential (e.g., pass-

word, secret key, etc.) under protection and a set of attributes,

such as account name, service name, path, etc. Types of attributes

an item has depend on its class, typically Internet passwords or

generic passwords. Figure 2 further shows how the keychain should
be used according to Apple [13]. An app first searches the keychain

using a set of attributes to find out whether its item has already been

there®, through the API SecKeychainFindInternetPasswo

rd or SecKeychainFindGenericPassword. If so, the item

should be updated to keep the app’s current credential, after the

app has been authenticated (signature verification) and authorized

(ACL lookup) by the OS. Otherwise, the app calls SecKeychaina
ddInternetPasswordor SecKeychainAddGenericPass
word to create a new item and set attributes to index it.

[Attributes (account name, service name, path, ...)

\
geychain
; atabase
l
) =l

[ ACL (trusted app 1, trusted app 2, ...) ]

Figure 1: Simplified Keychain Structure

On OS X, the creator of a keychain item can also attach to it an
access control list, using the function SecAccessCreate. The
ACL includes the operations that can be performed on the item
(e.g., read, write, etc.) and a set of trusted apps with the permissions
to do so. Whenever an app attempts to access an item, the service
first checks whether the access is allowed to happen and denies it
when it is not. Then, the service further looks up the ACL: when the
app is not there, the user’s permission is required to let the operation
proceed.

With its careful design, this access-control mechanism was found
in our research to still contain security-critical vulnerabilities, al-
lowing a malicious app to hijack a target app’s keychain item. One

SThis happens, for example, when the app has been upgraded from a lower
version already in the system.
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status = FindGenericPassword(args, );
If(status == found) {
AuthenticateUser(args,);

UpdatePasssword(args,);
}Yelse {
AddGenericPassword(args,);

}

Figure 2: Workflow of Keychain Template Code by Apple

scenario for this exploit is that when the malware runs before the
victim app creates a password (or rather a keychain item) in the
keychain. What the attacker can do here is to use the attributes of
the target app (the victim) to claim an item and also craft an ACL
that includes the target as a trusted app. When the target uses the
keychain to store password, it discovers the item with its attributes
already there and treats the item as its own secure storage (illus-
trated by the Apple’s template code in Figure 2). Note that this
is reasonable given that an app’s older version or other apps from
the same developer may have already been installed on the system.
Since the target is on the ACL of the item (which is controlled by
the attacker), the OS allows all its operations to proceed. Therefore,
at no point the target gets any indications from the keychain that it
is just a guest user of the item, and the owner is untrusted. This
confusion will cause the target to divulge its secrets to the attacker,
whenever it updates the user’s credentials to the keychain.

Apparently, the attack can only succeed when the attributes of
the victim’s keychain item are predictable. This is mostly the case
and the attributes typically remain constant for specific apps or ser-
vices. Also, the attacker needs to create the keychain item first.
These restrictions, however, turn out to be unnecessary: we found
that the attributes of any keychain item are actually public, though
their content (credential) is protected. And most importantly, we
found a second flaw in keychain that an existing keychain item can
be deleted by an unauthorized sandboxed app. As a result, all the
attacker needs to do is just identifying an existing item, removing it
from the keychain and creating a new one of its own with the same
attributes to wait for the target app to put its secret there. Fun-
damentally, the problem comes from the challenge for an app to
authenticate the owner of an existing keychain item. Apple does
not offer a convenient way to do so. Little information is given
to an app even for identifying the owner of an item, not to men-
tion any authentication support. The only way that could mitigate
the threat is for the target app to inspect an existing item’s ACL,
making sure that its name is not on the list together with untrusted
parties. However, Apple has never mentioned that this should be
done. As a result, protection is not in place within apps, leaving
them completely vulnerable to our attacks.

A straightforward solution is to strip some functionalities from
the keychain, making it simple. Actually, iOS does not have this
issue, because its keychain does not support the ACL at all: every
app is only allowed to access its own item and there is no flexibility
to let a group of apps share secrets except those by same developers.
This works because iOS apps are pretty simple and do not need
much collaboration, which is not the case on OS X. For example,
Safari manages the user’s passwords for different websites stored
by other browsers such as Chrome, which is made possible through
the keychain’s access control mechanism. Also, given the trend
that the iOS apps become increasingly complicated, the demand
for such collaboration may show up in the future.

Attacks. In our study, we utilized an automatic tool to identify hun-
dreds of vulnerable apps (Section 4). Here we elaborate our end-to-



end attacks on two prominent examples, Apple’s Internet Accounts
and Google Chrome. Internet Accounts is an OS X system app
that manages the user’s various Internet accounts, e.g., those for
iCloud, Email, Twitter, Facebook and others. The app stores those
accounts’ secret tokens in the default keychain, each in a different
item. In a similar way, Chrome also keeps the user’s passwords for
each web account.

In our research, we built a sandboxed attack app against Apple’s
Internet Accounts on OS X 10.10, the most recent version when we
found the problem, and Chrome v40.0.2214.94. The attack app
managed to hijack the keychain item the Internet Accounts app
uses for keeping the iCloud token and the item in which Chrome
stores the user’s Facebook password. Note that all other informa-
tion these apps put there is equally vulnerable to the same attack.
Specifically, iCloud utilizes the user’s email address as her account
name and sets the serviceName attribute to “Apple ID Authen-
tication”. Other attributes the Internet Accounts needs to create
and retrieve a keychain item are just the string length of these two
attributes (accoutName and serviceName). Our attack app,
running before the service was set up, first created an item using
these attributes and deliberately granted the full access permission
to the Internet Accounts. As a result, the Apple service unwittingly
updated to the item the user’s iCloud token. In a similar way, the
tokens of Gmail, Facebook, Twitter, etc. managed by Internet Ac-
counts are also exposed to the attack app.

When it comes to Chrome, the browser also utilizes attributes
serviceName (www.facebook.com), accoutName (email
address of the user) and their lengths. Other attributes involved are
the URL path (a constant /), port (always ‘0’), protocol (kSecPro
tocolTypeHTTPS) and authentication type (kSecAuthentic
ationTypeHTMLForm). Our app successfully hijacked the key-
chain item and obtained the user’s Facebook password. It further
got through the MAC App Store’s security checks. Video demos
for both attacks are posted online [15].

We reported this vulnerability to Apple on Oct. 15, 2014, and
communicated with them again in November, 2014 and early 2015.
They informed us that given the nature of the problem, they need 6
months to fix it. We checked the most recent OS X 10.10.3 and beta
version 10.10.4 and found that they attempted to address the iCloud
issue using a 9-digit random number as accountName. However,
the accountName attribute for other services, e.g. Gmail, are still
the user’s email address. Most importantly, such protection, based
upon a secret attribute name, does not work when the attacker reads
the attribute names of an existing item and then deletes it to create a
clone under its control, a new problem we discovered after the first
keychain vulnerability report and are helping Apple fix it.

3.2 Container Cracking

The security weaknesses within the keychain happen when sand-
boxed apps want to share resources (i.e., passwords) across sand-
box boundary. However, even for the private resources inside each
app’s sandbox which are never designed for sharing, XARA attacks
can still happen, due to a weakness in the unique BID-based sepa-
ration design on OS X.

BID conflict. As introduced in Section 2, each sandboxed app has a
BID, which needs to be unique. This is important because once the
app is installed, its BID is used to create a container directory that
other sandboxed apps cannot touch. On OS X, all apps’ contain-
ers are under the directory ~/Library/Containers/, e.g.,
~/Library/Containers/com.evernote.Evernote/.

Their directory names, the BIDs, bind them to their individual apps:
the OS verifies app signatures whenever access attempts are made,
and only those from the owners of the directories or the parties on
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their ACLs are allowed to go through. To ensure the uniqueness of
BIDs, the MAC App Store checks submissions to deny those using
the BIDs of the apps already in the store®.

What causes a complication here is the embedded programs within
an app, that is, the sub-targets of the app’s project. A sub-target can
be a helper program, XPC Service (another MAC IPC mechanism),
or framework, etc. each of which has its own plist and BID. Par-
ticularly, the helper (e.g. 1Password mini program) and the XPC
Service also have their individual container directories, while the
framework is a directory for shared resources (e.g., libraries). For
apps published by the Apple Stores, their helpers and XPC Ser-
vices are all sandboxed. Once installed, their containers are also
placed under ~/Library/Containers/, alongside with those
of their main programs. Interestingly, we found in our research
that the MAC Store fails to verify whether a sub-target’s BID is in
conflict with those belonging to other apps or their sub-targets, ex-
cept for the Apple reserved BID (those starting with com. apple).
This allows one to publish an attack app whose helpers or XPC
Services are using the BIDs of other apps, their helpers or XPC
Services. Once the attack app is launched, whenever the OS finds
out that the container directory bearing the sub-target’s BID (as its
name) already exists, the sub-target is automatically added onto the
directory’s ACL. As a result, the malicious app gains the full ac-
cess to other apps’ containers, which completely breaks its sandbox
confinement.

The cause of the problem could be the convenience given to the
app developer to share frameworks, helpers or XPC Services in dif-
ferent apps. Particularly, in our study, we scanned 1,612 apps from
the Mac App Store and found 40 frameworks shared by different
developers, e.g., Dropbox0SX. framework used by 14 apps for
subscribing the Dropbox service. This security risk is not present
on i0S, on which the containers of main programs and sub-targets
are put under different parent directories, and most importantly,
they are named with randomly generated UUIDs. Again, the sim-
plicity of the container structures here could be the result of limited
functionalities of iOS apps, which do not need to extensively share
resources among them.

Attack. This BID conflict threat affects every sandboxed app run-
ning on OS X. In our study, we implemented end-to-end attacks on
a few high-profile apps, including Evernote, WeChat, QQ (a pop-
ular online chat app), Money Control (a popular Finance app) and
others (Section 4.2). For example, from the container of Evernote,
our attack app, involving an XPC Service that hijacked the target
app’s BID, successfully stole all the contacts of the user and her pri-
vate notes from ~/Library/Containers/com.evernote.
Evernote/account/. Also, it recovered all the message pho-
tos under WeChat and QQ. Again, our app got through the security
check of the MAC App Store. The video demos of the attacks can
be found at the anonymized private site [15]. In Section 4.2, we
further present the consequences of the attacks on other apps.

3.3 IPC Interception

Breaches of cross-app resource sharing (i.e., keychain) and BID
based sandbox isolation mechanism unwittingly grant the adver-
sary unauthorized access to other apps’ resources. The problem,
unfortunately, does not stop here: in our research, we found that
major cross-app communication (IPC) channels on OS X, NSCon-
nection in particular, and those deployed across platforms, such as
WebSocket and Scheme (Section 3.4), are also designed with flaws.
This exposes critical information, e.g. all Web passwords in major

®Note that Gatekeeper typically blocks the installation of untrusted third-
party apps.



browsers, to the adversary in even more various ways. Below we
elaborate our findings.

NSConnection. As introduced before, NSConnection is an Apple-
specific IPC channel. It allows one party to act as the server and
share an object with other client apps. These clients can then com-
municate with the server by invoking the interfaces defined within
the object. The channel is designed to deliver a large amount of
data between apps, compared with Scheme (Section 3.4). A secu-
rity problem here is that the OS does not offer means for the apps
to authenticate each other when they are using NSConnection, nor
does Apple ask the app developer to avoid sending secrets across
the channel. As a result, we found that a sandboxed app can easily
impersonate the server or the client of a target app to the other party
to access sensitive resources.

Specifically, to create an NSConnection object, the server needs
to have a name for the object, which is typically a constant string
(e.g., com.evernote.ipc.client for Evernote) hardcoded
within the app. This name is later used by the client to acquire the
object from the OS (through the API rootProxyForConnecti
onWithRegisteredName). What can happen here is that an at-
tack app can create an NSConnection object with that name, ahead
of the target server, to impersonate it to the client. In this case, the
client will be cheated into communicating with the attacker, taking
it as the target. The attack can also go the other way around: the
malicious app, with the knowledge of the target server’s name, can
connect to it and use the interfaces of its object to invoke its internal
functions. Note that Apple does not offer any API to let the server
or the client find out the identity of the party it is talking to (e.g., the
process ID of the app). Therefore, authentication in the IPC is not
supported by the OS. Given that the need for such authentication
has never been made clear by Apple, all apps using this channel
were found to be vulnerable in our research (Section 4).

WebSocket and beyond. Unlike NSConnection, WebSocket is not
Apple-specific, and instead a generic protocol for a server and a
client to establish a full-duplex single socket connection. Its spec-
ification [16], which has been developed as part of the HTMLS5
standard, introduces a JavaScript interface through which the web
content inside a browser or an app’s Webview instance can directly
talk to another app. This channel is often used by browser exten-
sions to communicate with an app on the local system through a
predetermined TCP port. Specifically, the app runs a WebSocket
server to listen on the port, which is connected by the script code
of the extension to exchange data. The problem is that in the ab-
sence of proper authentication, a malicious program (with the net-
work permission when it is sandboxed) can preemptively claim the
port before the legitimate server does. This enables it to receive
data from the target extension. Such a security risk can also hap-
pen on the browser side: a malicious extension can impersonate
the authorized one to talk to the local app through its port. Note
that other inter-app communication through TCP port, like the lo-
cal web server used by popular app Pushbullet, can also be attacked
in this way.

It turns out that the Apple platforms do not provide any means
for an extension to authenticate a local WebSocket server. There
is no way for the extension to find out the identity of the local app
through an API call. The only solution is a custom authentica-
tion mechanism built by the app/extension developer. On the other
hand, major browsers, e.g. Google Chrome, embed the ID of an
extension in their message delivered to the local program, which
helps the latter to determine whether the message comes from the
right party. However, since the extension impersonation threat has
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not been identified, the developer has not been informed about the
importance of building proper protection into her app.

Attacks. The security risks of intercepting the IPC communica-
tion through these vulnerable channels are realistic and serious. As
an example, here we just elaborate our end-to-end attacks on three
popular apps. We analyzed the 1Password app for OS X, which
is one of the most popular password management apps and ranked
3rd by the MAC App Store [1]. The app comes with a browser
extension for each major browser that collects the passwords from
the user’s web account and passes them to the app through a Web-
Socket connection. In our research, our sandboxed app created a
local WebSocket server that took over the port 6263, before the
1Password app did, and was successfully connected to the pass-
word extension and downloaded the password whenever the user
logged into her web account. We reported our findings to the 1Pass-
word security team, which acknowledged the gravity of this prob-
lem. This attack succeeded on OS X 10.10 (latest version when we
reported the problem), against Chrome, Firefox and Safari. Our at-
tack code passed the vetting process of the MAC Store. The attack
demo is here [15].

The similar attack was also successful on Pushbullet, an Apple-
recommended popular app for exchanging notes, links, pictures and
files between multiple devices. The app authenticates a user by
running Google Single Sign On (SSO) within a browser. After the
user signs in, Google redirects the browser to the app’s local web
server that listens on the port 20807, together with a secret token. In
our attack, this port was first taken over by the malicious app, which
then got the redirection link from Google and stole the token. After
that, the attacker released the port to Pushbullet, which later got the
token resent by Google.

We further exploited the NSConnection channel used by the fa-
mous Evernote app, the most popular notetaking and archiving app
on the Apple platforms (ranked 3rd among free “Productivity” apps
in the MAC Store). Evernote includes an NSConnection server to
exchange data with its helper program. What we found is that an
attack app can impersonate Evernote’s server before it starts to run
and communicate with the helper. Also, it can act as the NSCon-
nection client to get an object from the server. The object our app
obtained allowed the attacker to acquire the authentication token of
the Evernote app. Our demo is posted here [15].

3.4 Scheme Hijacking

As mentioned earlier, URL Scheme, an inter-app communication
channel, is different on the Apple platforms. Specifically, Apple’s
OSes automatically associate a scheme with one app even with the
presence of multiple apps claiming the same scheme. This design
leads to a unique problem to Apple’s OSes, as elaborated below.

Scheme takeover. Essentially, a URL scheme is a simple proto-
col that an app defines for communicating with others. The app
specifies a URL format in its plist file and lets other apps invoke
it and pass parameters through the URL. Once this URL is trig-
gered within the browser or a webview instance inside another app,
an HTTP redirection is launched towards the “location” part of
the URL, e.g., “yelp:”, and thus activates the app claiming the
scheme, using the data delivered by the remaining part of the URL.
Also, a scheme invocation can be initiated by an app with the API
openURL. Apple extensively utilizes URL schemes to run system
apps, e.g., mailto (for opening the Mail app), tel, facetime
and sms (for launching their corresponding apps).

Things become a bit tricky when two different apps register the
same URL scheme with the OS. This conflict is resolved on the
Apple platforms according to the nature of the scheme. Specifi-
cally, Apple has a list of system schemes (e.g., sms, Facetime,



etc.) that cannot be taken by any third-party apps, and another list
of schemes whose affiliations can be changed under the user’s con-
sent, e.g., the default browser for opening ht tp. For a scheme not
on the lists, it will be bound to the first app that registers it on OS X
and the last on i0S, as discovered in our study. Given this conflict
resolving strategy, a malicious program can hijack a target app’s
scheme to get the service request or even the data sent to it. Partic-
ularly on iOS, the attack works even when the malware is installed
after the target app.

This scheme hijacking attack can be detected on OS X using the
API URLForApplicationToOpenURL or LSCopyDefault
HandlerForURLScheme, which returns the identity of the app
that successfully registers a given scheme. However, no corre-
sponding API exists on the other Apple’s OS, i.e., i0S. In the ab-
sence of such OS-level supports, an app can do nothing to authen-
ticate the party it invokes through a URL. Therefore, all third-party
apps running on iPhone and iPad are completely unprotected from
this threat. Note that Apple has never explicitly asked its developers
to verify the apps launched by URLs, nor does it check duplicated
scheme definitions at the App Stores, as observed in our study. The
consequence is that oftentimes, even OS X apps are less protected
than they should, and vulnerable to the scheme hijacking attack
(Section 4.2). Following we elaborated our end-to-end attacks on
some high-profile OS X and iOS apps. Note that our attack apps
were successfully uploaded to both the MAC and iOS App Stores.

Attack on OS X. In our research, we implemented an attack on
Waunderlist, a popular free app (ranked Sth in the “Productivity”
category on the MAC Store) for managing MAC users’ to-do lists.
The app uses Google SSO: the user logs in Google in the browser
and then is redirected to the URL wunderlist://ocauth/goo
gle?token=ya29xXX, which invokes Wunderlist, passing to it
a secret token. In our attack, an unauthorized app first registered the
scheme “wunderlist://”. As a result, our app stole the token
from the browser. More interestingly, our malicious app then im-
mediately delivered the token to Wunderlist by calling openURLs :
withAppBundleID (an OS X specific API), acting as a man-in-
the-middle. This actually lets the SSO go through and therefore
make the attack stealthy (a video demo here [15]).

Attack oni0S. Scheme hijacking poses an especially serious threat
to 10S, which heavily relies on URLs for inter-app interactions
(Section 4.2). As an example, we exploited this weakness and suc-
cessfully obtained the victim’s Facebook token for Pinterest, the
most famous personal media management app. Specifically, Pin-
terest and other apps all support the SSO login through the Face-
book app. Whenever the user clicks on “continue with Facebook”
in these apps, the Facebook app is invoked to ask for the user’s per-
mission to let the authentication go through and also grant Pinterest
(and other apps) access to some of her Facebook data. With the
user’s consent, Facebook triggers a scheme £b274266067164:

//access_token=CAAAAP 9uIENwBAKk&X=Y to deliver a se-
cret access token to the app. In our research, our attack app regis-
tered “fb274266067164://” and took over this scheme. As
a result, Facebook unwittingly launched our app and passed to it
Pinterest’s access token. Actually even the scheme for invoking
the Facebook app (“fbauth://”) was successfully hijacked in
another attack, which enabled the attacker to become a man-in-the-
middle, performing the whole SSO within its Webview instance on
behalf of the real Facebook app. Most importantly, once it got the
secret token from Facebook, the attacker forwarded it to the Pinter-
est app through “fb274266067164://”, which completely hid
the attack from the user. Note that this last step can be detected us-
ing the APl openURL: sourceApplication, which returns to
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the caller (here, Pinterest) the party that initiates the scheme com-
munication. However, the protection is not in place within any apps
that we scanned (Section 4.2), including Pinterest. This may be due
to the fact that Apple never explicitly informs the developers to do
this inspection. Interestingly, again there’s no corresponding API
for detection on the other Apple’s OS, i.e., OS X this time. We suc-
cessfully launched the attack and a video demo is posted here [15].

4. MEASUREMENT AND DEFENSE

In this section, we elaborate an automatic analysis tool we built
for detecting vulnerable apps and a measurement study that reveals
the scope and magnitude of the XARA problem. We further show
that though a generic solution to the problem needs a significant
effort from Apple and its app developers, a simple native program
operating on MAC OS X can help mitigate the threats.

4.1 Detection of Vulnerable Apps

Among all the security weaknesses reported in Section 3, some
(e.g., the scheme hijacking on iOS, the BID conflict, NSConnec-
tion) are caused entirely by the security flaws within the system
(OS or the Apple Store), and only a system-level solution can fix
them. Other threats, however, are more contingent upon what an
app does, particularly, whether it properly authenticates the party it
interacts with. To better understand the impacts of those security
weaknesses, we developed Xavus, a XARA vulnerability scanner
that statically inspects Apple apps’ binaries to identify those sus-
ceptible to the XARA threat. This analyzer was then used to eval-
uate the security qualities of a set of popular apps (Section 4.2).
Note that Xavus can also serve the developer by helping her iden-
tify XARA weaknesses in her app, which is important given the
challenges in fixing the problems on the system level, e.g., the key-
chain issue we reported last October is still not successfully fixed
in the most recent OS X 10.10.3 and beta version 10.10.4.

Design. The idea for detecting the XARA vulnerability within an
app is to find out whether the app authenticates other parties associ-
ated with a service (e.g., keychain) or a channel (e.g., WebSocket,
NSConnection or Scheme) before using it. Since typically, one
needs to first claim such a service or channel, what we need to do is
to inspect the control-flow graph (CFG) between the program loca-
tion for the claim (taint source) and that for the use (sink) and find
out whether the authentication has happened. To this end, Xavus
is designed to include six modules, as illustrated in Figure 3, for
disassembling an app’s binary, determining whether a specific ser-
vice or channel is utilized, and if so constructing CFG, identifying
taint sources and sinks, checking the presence of authentication on
execution paths and giving output. Following we describe how this
design works and how it was implemented in our research.
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Figure 3: Detection of XARA Vulnerability




Apple code analysis. The first step for analyzing an MAC or i0S
app is to disassemble its binary. Most Apple apps are built with
Objective-C and their binaries are in the Mach-O format. Disas-
sembling such binaries is done within our implementation of Xavus
through Hopper [8], a popular tool for reverse-engineering Mach-O
files [12], which converts the MAC binaries into Intel x64 instruc-
tions and iOS app code into ARMv7 instructions. Note that i0S
apps are encrypted and need to be decrypted before they can be an-
alyzed by Xavus. In our research, we ran Clutch [2] to decrypt iOS
apps and then collect their binaries.

To detect the vulnerable apps that claim and use services or chan-
nels without proper authentication, our approach first looks for the
presence of authentication APIs within the apps, and then checks
whether the authentication actually happens to the services or chan-
nels in use. To this end, we implemented our analysis with Python
as a Hopper plug-in. For each app, the plug-in searches for the
invocation of the API for claiming a service or channel. Specifi-
cally, it inspects the app’s instructions for related API calls, e.g.,
SecKeychainFindGenericPassword for keychain access.
The names of C APIs are kept in the app’s symbol table, and Object-
ive-C APIs can be found under the sections _objc_methname
and _objc_selrefs ofits Mach-O file. C APIs are called through
their stub functions or using corresponding symbols addresses, while
Objective-C APIs are triggered by the dispatch function objc_msg
Send. This happens through passing a pointer to the receiver (i.e.,
the called object), the name of the function (called selector, a null-
terminated string), together with other parameters to the dispatch
function objc_msgSend. Such an operation can be observed
when the selector is stored (directly or after propagation through
direct data movement) to the x64 RSI or ARMv7 R1 register right
before the objc_msgSend call. We track such propagation until
the end of the procedure. To find out the program location where a
service or channel related API is called, our approach leverages the
cross-reference information provided by Hopper about all sites for
C API stub function calls or loading of symbol addresses, and the
load instructions (e.g. mov, lea, etc.) that operate on the pointers
to the Objective-C APIs. Once a claim-related C API stub function
or symbol address is found to be used (directly or after propagation)
in call instructions or an Objective-C API is found to be moved to
the RSI (or ARMv7 R1) register for the objc_msgSend call, the
location for the claim and the related service or channel type are
considered to be identified.

From the locations of the claim, Xavus further builds a CFG and
uses a taint analysis to connect the claim of services to the API that
uses the service or channel (Figure 3). Hopper provides a Python
API interface for constructing the CFG within a function. On top
of it, we further implemented a technique for linking CFGs across
functions whenever necessary (when the use of the service or chan-
nel is not found within the current function), as elaborated later.
Using the CFG obtained in this way, Xavus runs the taint analysis
as follows: the references of the channels or services, as returned by
the claim-related API calls (e.g., SecKeychainFindGeneric
Password ), are tagged as taint sources. We track the propaga-
tion of the references (taint sources) across the execution paths on
the CFG through a depth-first traversal: in our current implemen-
tation, such a propagation is identified through direct data depen-
dencies, i.e., when a tainted reference is moved across different
registers or memory locations by the instructions like mov or lea.
As an example, for the instruction mov rcx, rdx when rdx car-
ries the reference, the taint is propagated to rcx. Tracking such
a propagation, our approach continuously checks whether any data
(tainted by the reference) becomes a parameter to a use API (e.g.,
SecKeychainItemModifyAttributesAndData), whichis
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considered to be a taint sink. This analysis stops on one execu-
tion path once a sink is found, or the function ends, or after a
predetermined number of basic blocks (set to 100 in our imple-
mentation) has been gone through. Along the execution paths be-
tween a source and a sink, our analysis further checks whether the
service reference is passed to any authentication operation (e.g.,
SecACLCopyContents), according to the type of the service
and channel in use. The objective here is to find out whether proper
authentication happens before the use. In the case that such authen-
tication is not in place, the app is reported to be vulnerable.

The main challenge here is to build an inter-procedural CFG for
an Objective-C program when a service reference is not used in the
same procedure where it is claimed. Since Hopper does not resolve
the class of the receiver object in objc_msgSend calls, we have
to inspect the name of the called function (i.e., selector) to figure
out how its object is initialized. Specifically, in the case that the
selector name is unique across all classes within the program, the
function is identified and then its CFG is connected to that of the
caller procedure. Otherwise, we determine the type of the ob-
ject from the content of the x64 RDI or the ARMv7 RO register
(for an objc_msgSend call). This was done in our research uti-
lizing the techniques described in prior research [19]: within one
procedure, our approach performs backward slicing from the lo-
cation of the function call to find out where its object instance is
initialized, which tells us the type of the object. Further, the class
hierarchy extracted from the _objc_classlist section of the
Mach-O file is used to help determine the type of the object and the
actual callee function: particularly, if the class does not implement
the selector, we check whether its superclass does. Using the type
and the selector name, the ambiguity of the callee function can be
resolved. However, in rare cases that the type cannot be found in
this way, e.g., when the object instance is initialized in another pro-
cedure, we have to analyze all the functions with the callee’s name
across all their classes. In this case, the aforementioned taint analy-
sis needs to be conducted across all these functions. Again, within
each function, Xavus goes through each path, locating a sink or
hitting the end of the function or stopping after inspecting 100 ba-
sic blocks. This treatment helps remove some unrelated functions
(with the same name as the one invoked in the caller procedure),
as they may not contain the sink. The app is reported to be vul-
nerable if at lease one of such a callee function is found to include
the use of the service or channel along the source-sink path with-
out proper authentication protection. This approach, though unable
to precisely identify the object type of each callee (an open ques-
tion [19]), turns out to be effective in practice: our manual analysis
of 100 randomly selected apps flagged to be vulnerable did not find
any false positives caused by the failure of constructing the inter-
procedural CFG or the taint analysis performed on top of the CFG.

Figure 4 shows an example for the analysis on Mac Evernote app
(Version 6.0.9), which does not authenticate the owner of a key-
chain item before updating to it the user’s password. Specifically,
Xavus first builds the CFG of an Evernote procedure [ENKeychai
nHelper saveValue:toKeyChainItem], and locates the
claim for the keychain service, i.e., getting a reference of an item
through the API SecKeychainFindGenericPassword (Line
3 under Assembly Code in Figure 4). The reference is returned in
memory [ss:rbp — 0x30]. Then Xavus follows the propaga-
tion of the reference and identifies one instance of using it, i.e.,
updating passwords through the OS X API SecKeychainItem
ModifyAttributesAndData. Xavus reports that Evernote is
vulnerable due to the absence of authentication before the use of
the reference.

Flaw detection. As mentioned earlier, Xavus is designed to de-
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Figure 4: Detection of Evernote’s Vulnerable Code for Key-
chain Password Updating

tect missing authentication of the parties that share a service or a
channel with an app before it is utilized by the app, a necessary
condition for the presence of the XARA weakness. To this end, we
built into our analyzer a set of features to fingerprint the authenti-
cation operation for each channel or service, as elaborated below.

e Keychain. The claim of this service happens when the app calls
SecKeychainFindGenericPassword or SecKeychainF
indInternetPassword. Both APIs return itemRef, the ref-
erence to the item. This reference will ultimately be used to update
a password to the keychain item through either SecKeychainIt
emModifyAttributesAndData or SecKeychainItemMo
difyContent. The only possible way that app could find out
whether the item is created by a trusted party is to inspect its ACL
that documents all the apps allowed to access the item. This is done
through the API SecACLCopyContents or SecACLCopySim
pleContents’. The absence of a call to the API on the execu-
tion path (between the claim and the use locations) indicates the
existence of a XARA risk within the app.

o NSConnection. As discussed in Section 3.3, NSConnection in-
volves a server and a client. On the client side, the app’s claim for
the channel (connecting to the server) is identified from the API
rootProxyForConnectionWithRegisteredName or co
nnectionWithRegisteredName, which returns an object fr-
om the server. Whenever any parameter on the object is found to
be passed to a function call, we consider that the channel is used.
Between these ends, authentication needs to be done for the client
to verify the identity of the server sharing the NSConnect ion ob-
ject. This, however, is not supported on today’s MAC OS X. More
specifically, the name of the object is mapped within the OS to an
NSMachPort object directly related to the server app. The prob-
lem is that according to Apple, verification of an app through its
NSMachPort has yet been implemented [4]. Note that once this
support is provided, we can look for the API SecCodeCheckVal
idity to determine whether the authentication is in place. On the
server side, whenever the app calls serviceConnectionWith
Name to share its object, it loses the control on the object. Any
party can get it from the OS.

o WebSocket. WebSocket servers are typically built over a few pop-

"Such authentication-related APIs were manually identified from
Apple’s API documentation.
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ular open-source frameworks, such as CocoaHTTPServer [3] and
QtWebKit [14]. All of them provide a receiver method for get-
ting messages from browser extensions, which is used by Xavus to
fingerprint this channel, and a response method for replying to
the extensions. The invocations of these two methods are identified
as the claim and the use of the channel, respectively. Between them,
the server is supposed to access the HTTP header Origin that in-
cludes extension IDs attached by the browser and check the signa-
ture of the browser through the API SecCodeCheckvalidity.
If these operations are not found, the app is considered vulnerable
to the threat from a malicious extension or app. On the other hand,
the attack from a malicious server against an extension cannot be
detected through any existing APIs.

e Scheme. The most popular ways for one app to launch another
through the Scheme channel is to trigger a constant link embedded
in the app or a URL returned from its Webview instance. The for-
mer can be directly found from the app, while the latter comes from
one of the four methods of WebPolicyDelegate, an object that
lets an app control the operations on the web content within the We-
bview. On the list are decidePolicyForMIMEType: reques
t:,decidePolicyForNavigationAction:request:,d
ecidePolicyForNewWindowAction:request: and wil
lPerformClientRedirectToURL:. The program location
where any of these methods is invoked or the constant string is ac-
cessed is considered to be a claim for the Scheme channel. The use
of the channel happens when the URL is invoked through openURL.
On OS X, between the claim and the use, the app can run URLFor
ApplicationToOpenURLor LSCopyDefaultHandlerFor
URLScheme to find out which app will be launched by a given
scheme. In the absence of any of these calls, it is highly likely that
the app is vulnerable to the scheme hijacking attack. An exception
is when the scheme here is actually claimed by the OS, for exam-
ple, mail, facetime, etc., which can be easily identified when
the URL is a constant string within an app. In the case that it actu-
ally comes from the web, the chance is that it is indeed vulnerable,
as the Webview can be used to open any links. Note that for i0S,
an app does not have any means to find out the owner of a scheme.

e BID. The BID confusion problem is completely caused by the
Apple Store and the design of the MAC OS X sandbox. Neverthe-
less, Xavus is built to find out whether apps deposit data to their
containers, which indicates that sensitive information could be ex-
posed through this vulnerability. This data-storing activity can be
easily identified from the function call NSHomeDirectory.

Discussion. The goal of Xavus is to measure the pervasiveness of
XARA threats through detecting apps unprotected by proper au-
thentication, which is important for understanding the impact of
XARA risks. Our implementation inspects only specific portions of
each app’s binary, i.e., those cross-app service related instructions
and procedures. Even though Xavus was implemented for detect-
ing the XARA on known channels, the idea behind it, authentica-
tion check between the claim and the use of a channel, could find its
application to detecting similar flaws within other cross-app mech-
anisms. However, Xavus is not sound and there are situations when
a vulnerable app falls through the crack: examples include the app
that dynamically generates the scheme to be invoked or those in-
volving multiple object functions bearing the callee’s name, which
may not be disambiguated by our approach, particularly when the
object is initialized outside the caller’s function. How to address
these issues is an open research question. On the other hand, the
app developer might implement some ad-hoc protection that our
analyzer misses. This happens to those using the keychain or Web-
Socket. An app could delete its keychain item and create a new



one each time when it updates new credentials there, an approach
that Apple does not recommend [11]. Also, a browser extension
may authenticate a local program using a secret over the WebSocket
channel. In our research, we manually analyzed the apps randomly
sampled from those flagged as vulnerable by our implementation to
ensure that the results were accurate (Section 4.2), and concluded
that XARA indeed are real threats in a vast majority of cases.

4.2 Impacts

With the help of Xavus, we were able to analyze a large num-
ber of popular Apple apps to understand their susceptibility to the
XARA threat. In our study, we downloaded 1,612 free apps from
the MAC App Store. These apps cover all 21 categories of the store,
including social networking, finance, business, and others. In each
category, we picked up all the free apps when less than 100 of them
are there, and top 100 otherwise. Also from the iOS App Store, we
collected 200 most popular apps, 40 each from “All Categories”,
“Finance”, “Business”, “Social Networking” and “Productivity”,
after removing duplications. The decrypted versions of these apps
were extracted using Clutch [2].

All the apps were first quickly scanned to determine whether they
utilize vulnerable services or channels, or export to their container
directories. This was done by running the utility ot ool to extract
Mach-O sections “__objc_selrefs”and“__ objc_msgrefs
from each app’s binary and look for the functions fingerprinting
different services, channels and operations, as described in Sec-
tion 4.1. The apps discovered at this stage were further analyzed
using Xavus for missing authentication operations. A problem is
that Hopper does not support a batch mode. To analyze an app,
we had to manually load it into Hopper before it could be auto-
matically evaluated by Xavus. This process was time-consuming,
taking from about 1 to 30 minutes per app. The developer of Hop-
per informed us that the batch mode will be supported in the near
future. For the time being, however, we could only analyze 200
randomly-chosen apps in the case that more were found to be asso-
ciated with a channel or a service.

Vulnerable apps. Table 1 summarizes our findings. Specifically,
among all 1,612 MAC apps, 198 of them use the keychain. Xavus
did not find that any security check is performed by these apps be-
tween their claim of the keychain item and use of it to store sensi-
tive data. We further randomly chose 20 samples from the 198 apps
and inspected them manually. It turns out that all of them can be
easily attacked except todo Cloud and Contacts Sync For Google
Gmail, which delete their current keychain items and create new
ones before updating their data. Note that this practice (deleting an
existing item) is actually discouraged by Apple, which suggests to
modify the item instead [11].

apps with the| vulnerable/ exploitable/
Channel clll);’nnel /total scanned sl;mpled
Keychain 198/1,612 198/198 18/20
NSConnection 58/1,612 58/58 20/20
Scheme (i0S) 138/200 106/138 20/20
Scheme(OS X) 982/1,612 132/200 20/20
BID 468/1,612 468/468 20/20

Table 1: Vulnerable Apps

For the IPC on OS X, we found that 58 apps use NSConnec-
tion. All these apps were vulnerable. Again we sampled 20 and
confirmed that all of them were indeed exploitable.

We did not find in our collection any free app using WebSocket.
However, there are popular paid apps claiming this channel. Partic-
ularly, 1Password is a leading paid app, which, as described in Sec-
tion 3.3, is completely vulnerable. Other examples include Last-
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Pass (a popular password management app), Adobe Creative Cloud
(an Adobe service app) and LiveReload (for dynamic web content
reloading). These apps were all vulnerable to the attacks from ma-
licious apps (Section 3.3).

When it comes to Scheme, we discovered 982 MAC apps us-
ing this channel. From them, 200 apps were randomly picked and
analyzed by Xavus, which reported that 132 were vulnerable. We
further manually looked into 20 samples and successfully built end-
to-end attacks. The remaining 68 apps either use Apple reserved
schemes or dynamically create their URLs from network traffic
or other sources, which our current implementation cannot han-
dle. Among the 200 iOS apps, 138 were detected to trigger URL
schemes. 106 of them were reported to be vulnerable. Through
random sampling, we confirmed that this finding is accurate. Also,
those that could not be confirmed are very much in line with their
MAC counterparts, either running reserved schemes or too com-
plicated to analyze. Finally, 468 out of the 1,612 MAC apps were
detected to write to their container directories, which can all be read
by unauthorized apps hijacking their BIDs. Overall, at least 88.6%
of the scanned apps using these cross-app channels are vulnerable
to XARA attacks.

Consequences. Attacks on these vulnerable apps will have serious
consequences. Table 2 lists some examples of the findings made
in our research. Specifically, keychain credentials for high-profile
services (e.g. iCloud, Gmail, Google Drive, Facebook, Twitter,
LinkedIn, etc.) and any web accounts in Google Chrome are com-
pletely exposed. All their passwords and secret tokens can be col-
lected by the adversary. Those vulnerable to the IPC interception
include Keychain Access, Evernote, 1Password, Pushbullet, etc.
Their sensitive data, such as authentication tokens and even current
OS user’s username and passwords are up for grabs. The scheme
vulnerability was found in 1Password, Dashlane, Evernote, Kindle,
Adobe Revel, Wunderlist, etc., on OS X, through which app users’
credentials can be gathered. On i0S, popular apps like Pinterest,
Instagram, U.S. Bank (banking), Citi Mobile (banking), PayPal,
Amazon, WhatsApp, Dropbox, etc., were found to be exploitable.
Their authentication tokens and other information can be stolen.

The BID confusion problem also has a significant impact. For
example, our study shows that popular mail clients, such as App
for Gmail, Mailtab for Gmail and Outlook, all expose MAC users’
emails and their cookies to the app hijacking their BID. Other apps
that expose cookies include popular Finance apps Money Control
and Inspire Finance Lite, as well as Tumblr, AnyDo, Pocket and
more. Note that all the attack apps were successfully released by
the Apple Stores. So, the security threats are indeed realistic.

4.3 Mitigation

Addressing the XARA problems is more difficult than it appears
to be. Oftentimes, the OS itself does not know how to protect the
resource of a third-party app. Proper interfaces may need to be
given to the app developers to let them specify and enforce their in-
dividual policies. A prominent example is the keychain, for which
the OS is in no position to decide whether a set of attributes for
retrieving an item should be used by one app but not others. Due to
such complexity, these security weaknesses will likely be there for
a while, before Apple figures out a way to work with the developers
to fix them together. Indeed, since we reported the keychain issue
to Apple in last October, so far, Apple did nothing except using a
random username to patch some of its own apps, which turns out
to be futile (Section 3.1).

Given the challenges in finding a long-term solution, it is impor-
tant to have some protection in place to mitigate the threat. In this
section, we describe a simple, lightweight scanner app, which au-



XARA types Secrets exposed

Apps/Services affected

Password Stealing
(keychain)

passwords/
authentication tokens

iCloud, Gmail, Google Drive, Facebook, Twitter,
any web account used in Chrome.

authentication tokens/

IPC Interception OS X username and password

Keychain Access, 1Password, Evernote, Pushbullet.

Scheme Hijacking passwords/ Dropbox, Pinterest, U.S. Bank, Citi Bank,
10S) authentication tokens Paypal, Amazon, Instagram, Whatsapp.
Schen(lgSH ;J;)wkmg passwords/authentication tokens Evernote, 1Password, Dashlane, Kindle, Wunderlist.
email/cookies Foxmail, App for Gmail, Mailtab for Gmail, Mailtab for Outlook.
Container Cracking | notes/contacts/instant message pictures Evernote, QQ, WeChat.
cookies Money Control, Inspire Finance Lite, Tumblr, AnyDo, Pocket.

Table 2: Examples of XARA Consequences

tomatically detects XARA attempts on OS X. As a third-party pro-
gram running in the user land, this scanner can be easily deployed
to provide the Apple user immediate protection.

Idea and implementation. The idea of our XARA scanner is to in-
spect public information whenever a change to the system happens
(e.g., write to a file, installation of a new app) to detect whether a
service, resource or channel claimed by one app has been hijacked
by another. This design enables the scanner to work efficiently
and as we will show later, also effectively. Specifically, our app
registers file system event with API FSEvents, which is issued
when a specific file has been modified. Specifically, the scanner
monitors the keychain files under /Library/Keychains/ and
~/Library/Keychains/. Whenever they’re modified, our
app uses the APl SecItemCopyMatching to find out whether
a new item has been added, and if so further retrieves its ACL us-
ing SecACLCopyContents and inspects all the apps on the list.
Typically, a system app does not share the list with a third-party
app. Once this is detected, the scanner notifies the user of the po-
tential risk. When it comes to a third-party app, all we can do is
to build profiles for popular MAC apps through an offline analysis.
Each profile contains the ACL an app is supposed to use, which
is compared with the one retrieved from the keychain to detect an
exploit attempt.

For Scheme and BID, our scanner keeps track of newly installed
programs through the event API FSEvents. Whenever an app is
installed, the scanner goes through its plist to find out whether the
URL scheme it registers or the BIDs of its helper programs or XPC
Services are in conflict with the ones already in the system. Such
a conflict indicates an exploit attempt, either from the new app or
existing ones, and therefore triggers an alarm. Note that on scheme
conflicts, even Apple does not know which app is legitimate to bond
to a scheme. What Apple’s OSes do is to arbitrarily associate the
scheme with an app claiming that scheme (Section 3.4).

For NSConnection, in the absence of the app developer’s help,
an exploit cannot be detected before it happens. This is because
whenever a third-party app claims an object name or requests an
existing one, there is no reason to believe that the operation is il-
legitimate without the policies from the developer indicating that
such resources should only be assigned to a specific app. On the
other hand, once the attack happens, it can be quickly detected.
Our scanner redirects outputs of command syslog -w to get new
system logs immediately after they are generated. Once it observes
a failed attempt to register an existing object name or connect to an
NSConnection server that serves another app, an alarm is triggered,
as such a conflict is not supposed to happen. This approach does
not work on WebSocket, as the contest on a network port will not
show up on the log. The problem can be addressed using a heavy-
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weight system-level solution, for example, running DTrace [7] to
monitor the app’s system calls.

The XARA scanner is a light-weight, patching solution meant to
be utilized by the Apple users before a complete fix comes (which
may take time). Inevitably, its capabilities are limited: e.g., the
scanner can only protect known channels, and as mentioned ear-
lier, cannot prevent some attacks (e.g., those on NSConnection and
WebSocket) from taking place (but could detect them after the fact).
Alternatively, one may consider a more heavyweight patch, through
uploading a kernel module to gain a close monitoring of the events
happening within apps. However, even such an approach cannot
address a fundamental issue here: oftentimes, the OS does not have
information at all which party is authorized to talk to an app over
an IPC channel or who is entitled to own a specific URL scheme,
which can only be addressed by the app developers. A complete
solution, therefore, has to be built upon a new coordination mech-
anism through which the developer specifies security policies and
the OS enforces. Clearly, nontrivial effort is needed to get us there.

Evaluation. We evaluated our implementation (a native app) against
aforementioned XARA attacks (Section 3) except that on Web-
Socket. Our scanner detected all the exploits on the keychain, URL
schemes (on OS X) and BIDs, before the malicious attempts could
be executed. For the NSConnection interceptions, it caught them
from the events in the system log after the attacks happened. Note
that since such contention of app-specific resources, channels or
services does not exist during the system’s normal operations, our
scanner will not cause a false alarm, though it might miss some
exploit attempts. .

‘We further measured its performance on a MacBook Pro (Mid 2014
model, 2.6 GHz Intel i5, 8 GB memory, SSD), under OS X 10.10.2.
It utilizes no more than 0.2% of CPU during operations. Specifi-
cally, our exploit scanner is designed to use three events it registers
for exploit detection (Section 4.3). These events are issued when a
new app is installed or updated, new system log is generated or a
keychain file is changed. We measured the performance overhead
of the scanner to respond to the three events and perform corre-
sponding detection operations, as presented in Table 3. Specifi-
cally, for new app installation, we calculated the average time (¢1)
for installing each of the top 20 popular apps. Then we measured
the average time our scanner needs to check (¢2) a newly installed
app. The ratio t2/t1 is found to be 0.97% in our experiment, which
indicates that compared to each app’s installation time, the delay
caused by checking its scheme and BID is negligible. The sec-
ond event is triggered when the system log file is updated, which
causes the scanner to inspect the new log for the contest on an [PC
connection. In our research, we measured the processing time the
scanner took in 5 minutes, during the system’s normal operation.



By repeating the experiments ten times, we found that on average,
only 0.66% of the time during this period was spent on detecting
the possible IPC attack. The third event is for keychain update. The
overhead for our scanner to respond to the event and detect mali-
cious attempts was found to be completely negligible, as this only
happens when new apps start using the keychain or existing ones
need to update user credentials, which are not frequent.

Events Overhead of the Exploit Scanner
. installation time | detection time
app updating t1 per a 2 ver a t2/t1
/installations Per app Per app
22.63s 0.22s 0.97%
period t1 detection time
newlzystem measured t2 during t1 2l
& 5 min 1.99s 0.66%
keychain period tl detecthn time /il
chanees measured t2 during t1
& T day 0.55 0.00%

Table 3: Overhead of the XARA Exploit Scanner

S. LESSONS LEARNT

Almost all the XARA weaknesses we discovered in this research
come from Apple’s unique design of cross-app resource sharing
and communication mechanisms, e.g., keychain for sharing pass-
words, BID based separation, NSConnection for distributing ob-
jects and URL scheme for app invocation (different from Android).
Other XARA problems, i.e., the WebSocket issues may also exist
on other OSes, such as Windows and Android. This demonstrates
that the XARA weakness is indeed pervasive and serious. A natu-
ral question here is how those problems have been introduced and
what we can learn from them. In the section, we try to answer
the question, presenting the insights gained from analyzing those
vulnerabilities and the principles for designing a securer system.

Insights. The fundamental cause for the XARA flaws is unpro-
tected cross-app resource sharing and communication. Comparing
OS X with i0S, the latter is relatively securer simply because it
does not support credential sharing (among different apps) through
a keychain item and sub-target sharing (e.g., framework) through
containers, nor does it provide any complicated IPC mechanism
like NSConnection. For every avenue opened across apps, proper
authentication should always be in place. Otherwise, a XARA risk
may show up.

Apparently, XARA is an instance of the classic Unverified Own-
ership or Resource Squatting problem [5, 6, 23], in which software
fails to verify which party owns a piece of critical resource. The
unique challenge in addressing the issue, however, is that when
it comes to the interactions across third-party apps, less clear are
who should perform the verification and how to do so. For exam-
ple, when an app deposits the user’s credential to another party’s
keychain item on OS X, as long as it is indeed on the item’s ACL,
the operating system is not at a position to judge the legitimacy of
the operation, since this is allowed for credential sharing. As an-
other example, neither OS X nor iOS has any idea which app is
entitled to a specific URL scheme. The authentication here (on the
owner of the keychain item or the scheme before delivering data to
it) can only be performed by the app. Yet, the OS provider still has
the responsibility to assist the app developer in implementing such
protection (e.g. providing proper APIs) and further verify its pres-
ence in her app, which is essential for fostering a secure ecosystem.

Following we summarize the above insights into three key prin-
ciples for avoiding XARA hazards in cross-app interactions.
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Design Principle 1: Determine what the OS can protect and what it
cannot for every cross-app channel. When a new way for cross-app
resource sharing or communication is provided, the OS designer
always needs to determine whether authenticating the parties in-
volved can be done at the OS level or only by individual apps. The
OS needs to address the security issues whenever possible to ensure
the effectiveness of the protection and makes it clear what should
be taken care of by the app developer. Among all the XARA cases
we discovered, container sharing should be fully secured by the
OS: it has sufficient information to decide what is allowed to share
(e.g., framework) and what is not (e.g., the helper program’s di-
rectory). On the other hand, the keychain item, parties in an IPC
and the scheme owner often can only be checked by the app. It is
important to identify how to divide the responsibilities of security
protection at the early stage of developing cross-app channels.

Design Principle 2: Inform the app developer required app-side
security checks and provide means to do so. Whenever a cross-app
channel is found to need the app developer’s involvement to secure,
the OS provider should explicitly inform the developer what she is
supposed to do and provide proper technical supports. Our study
shows that this is exactly what Apple falls short. Oftentimes, it
does not offer any APIs for the required authentication: examples
include NSConnection, Keychain and WebSocket, etc. Even when
the API is available, e.g., for finding the app to be launched through
a scheme, rarely have we found any instructions for the developer
to do that. In the absence of such supports, XARA flaws become
inevitable.

Design Principle 3: Detect missing security checks at the app
store. Even with the proper information and technical means, we
believe that the OS provider can do more to help the app devel-
oper and secure its app ecosystem. What can be leveraged here is
how the apps are disseminated today: they are mainly downloaded
and installed from a centralized app store under the control of the
provider, which enables the provider to make vulnerability detec-
tion part of its app vetting process. This is complete feasible, given
the fact that today the Apple Store takes more than a week to ap-
prove an app while the automatic tools like Xavus can be built to
detect missing authentication within the app in minutes.

6. RELATED WORK

XARA attacks on Android. Security flaws related to XARA have
been discovered on Android, e.g., different types of confused deputy
problems within Android apps [20, 17, 21, 24]. Most relevant to
our work is the prior research on mobile origin crossing [25], which
reports an attack that a malicious Android app registers the scheme
of a URL not meant for invoking apps and runs it in a browser to get
a Facebook token. This problem is not a scheme hijacking, since
the scheme here is not associated with any legitimate app. Actu-
ally, preempting another app’s scheme is hard on Android because
whenever there are two apps registering the same scheme, Android
always notifies the user and let her make the decision. Also such
a problem has already been fixed by Facebook, yet the scheme hi-
jacking is an issue they are not aware of. Also related is the study
on the Pileup [28] attacks, in which a malicious app can gain an
elevated privilege through a system upgrade. The problem here is
not in the design of isolation protection but the mechanism to grant
an app additional permissions, which has been circumvented in the
upgrade process.

Security on the Apple platforms. Compared with Android, the
Apple platforms are much less studied in terms of their security
protection. A technical blog [9] talked about insecure handling of
schemes in the invoked apps on iOS, which is not the scheme hi-



jacking on both OS X and iOS, as discussed in this paper. Prior
academic research almost solely focuses on various techniques to
bypass the security checks on iOS private APIs [27, 22] and use
of them to propagate malware infections [26]. Understanding the
security implications of Apple’s inter-app interactions and sandbox
design has never been done before. Simultaneously and indepen-
dently, Fireye found the risk of hijacking iOS schemes and put a
blog online [10]. However, they just briefly discuss this security
risk without giving much detail, with a demo that apparently shows
a simple phishing attack. By comparison, our work is much more
thorough, deeper and broader. We built end-to-end attacks on sev-
eral high-impact apps (e.g., Facebook, Pinterest, etc.), identified the
impacts of the threat over a thousand apps, and more importantly
demonstrate that the attacks can be made stealthy (through different
man-in-the-middle tricks on MAC OS and iOS, passing the stolen
token to the victim app, to completely conceal the attack), which is
nontrivial (see Section 3.4). Also we completely circumvented the
restrictive security checks of the Apple Stores: actually, our attack
apps were approved by the App Store on January 23, 2015, almost
one month earlier than the blog (February 19), which did not men-
tion any study on the protection provided by the App Store. Further,
we discovered that the problem exists on both iOS and OS X and
different strategies these OSes took to resolve conflicts in Scheme
claims (Section 3.4), which is important to the success of the attack.
Note that our Youtube demo for the attack on OS X schemes [15]
was uploaded on February 5 before the blog, which only mentions
the attack on iOS schemes. Finally, we developed techniques for
automatically detecting such exploits and mitigating this risk.

Related to Xavus is PiOS [19], a general-purpose code analy-
sis tool for iOS apps. By comparison, our approach was designed
specifically for detecting XARA flaws within both MAC OS and
iOS apps.

7. CONCLUSION

In this paper, we identify a new category of security weaknesses,
called XARA, that pose a serious threat to the app isolation pro-
tection on modern OSes. Our study on the threat over the Ap-
ple platforms, the first of this kind, reveals its pervasiveness and
significant impacts: critical system services and channels, includ-
ing the keychain, WebSocket, NSConnection and Scheme, can all
be exploited to gain access to other apps’ resources, and even the
Apple Sandbox on OS X can be cracked, exposing an app’s con-
tainer directory to the unauthorized party. The consequences of
these attacks are serious, including leaks of user passwords, secret
tokens and all kinds of sensitive documents. Our research shows
that fundamentally the problem comes from lack of authentication
during app-to-app and app-to-system interactions, and further pro-
poses new techniques to detect and mitigate such a threat. This
preliminary effort contributes to a better understanding of this un-
derstudied security problem, an important step for building a more
effective app isolation mechanism on future OSes.
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