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Usability-oriented zero confi guration (ZeroConf) designs, with automatic service discovery “plug-and-
play” techniques, give rise to security risks. A study focusing on Apple—a major proponent of ZeroConf—
brings to light a disturbing lack of security: major ZeroConf components are mostly unprotected, and 
popular apps and system services are vulnerable to man-in-the-middle attacks. 

W ith the proliferation of portable computing sys-
tems, such as tablets, smartphones, and other 

Internet of � ings (IoT) devices, ordinary users face an 
increasing burden to properly con� gure those devices 
as they work together. In response to this utility chal-
lenge, major device manufacturers and so� ware ven-
dors, including Apple, Microso� , and Hewle� -Packard, 
tend to build their systems in a “plug-and-play” fashion, 
using zero con� guration (ZeroConf) techniques. For 
example, the AirDrop service on iPhone, once activated, 
automatically detects a nearby Apple device running 
the service to transfer documents or photos. Such Zero-
Conf techniques can automatically assign IP addresses 
to devices, resolve hostnames of other devices, and dis-
cover available services on the local network. In addition 
to those working on the IP network, similar techniques 
have been developed for automatic service discovery on 
other channels—Bluetooth in particular.1

When the design pendulum swings toward usabil-
ity, concerns arise as to whether the system has been 

adequately protected. To understand whether the pro-
tection those systems receive is commensurate with the 
threats they’re facing, we performed a security analysis 
on popular ZeroConf systems on Apple iOS and Mac 
OS X platforms. We focus on Apple because it’s a main 
advocate of ZeroConf techniques and is known for its 
rigorous security control. In our study, we inspected 
popular apps and system services to understand whether 
they’re properly guarded against realistic a� acks.

Given the strong demand for ZeroConf techniques, 
it’s critical to come up with usable solutions to address 
their security risks. We made a � rst step toward this 
end. We � rst designed a con� ict detection technique 
that checks whether a ZeroConf network is a� ack 
free. And then we proposed a more generic solution, 
called Speak Out Your Certi� cate (SPYC), that binds 
an Apple account certi� cate to its human owner. We 
analyzed the SPYC’s security design and evaluated the 
mechanism’s usability and security through two human 
subject studies with 60 participants.

Apple ZeroConf Holes: 
How Hackers Can Steal iPhone Photos
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Background
The concept of zero configuration (www.zeroconf.org) 
was first defined over the IP network to set up a network 
without manual configuration. To this end, techniques 
were developed to self-assign IP addresses to networked 
devices; resolve conflicts; announce a hostname and its 
IP address; and automatically discover services of inter-
est broadcasted by other devices, letting users choose 
services through browsing. Later, automatic service 
discovery was applied to bootstrap the devices running 
on other channels. We present two examples to show 
how ZeroConf works—Bluetooth low-energy (BLE) 
service discovery and IP service discovery. (For more 
information on ZeroConf and Bluetooth security, see 
the sidebar.)

First, BLE, a new Bluetooth technology, has been 
incorporated into iOS and OS X. BLE communication 
involves two main actors: a server that advertises and 
provides services and a client that discovers and uses 
these services. Each actor is identified by a universally 
unique identifier (UUID).

For the client to get services from the server, the two 
devices need to pair, a process that establishes a shared 
secret between them. This shared secret is used for 
authentication—that is, whoever possesses this secret is 
the right party. Traditionally, to pair, users are required 
to manually enter a PIN code. BLE comes with several 
new ZeroConf pairing methods that don’t require such 

manual configuration. One pairing method, Just Works, 
enables a client to directly pair with a server. Another pair-
ing method, out of band (OOB), automatically exchanges 
shared secrets in channels other than Bluetooth, for 
instance, through near-field communication or Apple’s 
iCloud account. Apple’s Core Bluetooth framework fur-
ther hides the details of the pairing from both users and 
developers, which by default, takes care of the pairing pro-
cess, easing both usage and development burdens.

Second, we look at IP service discovery. A prominent 
example of ZeroConf on the IP network is Apple’s Bon-
jour protocol, which devices use to publish and discover 
services in a LAN. Bonjour assigns IP addresses and 
hostnames to devices without users’ manual configura-
tion and enables devices to automatically discover avail-
able services in a local network. All the user needs to do 
is choose, from a list, the service he or she wants to use.

Every service on a device has a unique service 
instance name, and every device is identified by its host-
name. As an example, when publishing an AirDrop ser-
vice, a Bonjour server broadcasts to the local network 
to register its unique service instance name, for exam-
ple, 9c5e3d2, and hostname, for example, Jeffs-iPhone, 
which enables other devices to discover and access it.

A Bonjour client must go through two phases, dis-
covery and resolution, to find and access a service of 
interest. In the discovery phase, the client broadcasts 
discovery requests to look for services of a specific 

Related Work on ZeroConf and Bluetooth Security

Security threats affecting Link-Local Multicast Name Resolution 
(LLMNR), a zero configuration (ZeroConf) protocol used in Micro
soft Windows, have been mentioned in technical blogs1–4 and 
Internet Engineering Task Force documentation.5 Unlike Bonjour, 
LLMNR isn’t designed for automatic service discovery but instead 
just supports name resolution.6 In addition to spoofing name reso-
lution, our study on Bonjour also focuses on the service discovery 
stage and the fundamental challenge in protecting it with TLS.

Related to Bluetooth ZeroConf are works on the security of 
the devices without input capabilities (for instance, no keyboard 
or display).7,8 However, our research is the first to investigate how 
the Just Works and out-of-band pairing modes are supported on 
Apple’s Core Bluetooth framework.9
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type, for instance, AirDrop. The Bonjour server—for 
instance, Jeff ’s iPhone—then responds with its ser-
vice instance name, 9c5e3d2. Next, in the resolution 
phase, the client broadcasts again to query the host-
name and IP address of the server of interest. With the 
IP address, the client can connect to the server and use 
its service. This resolution phase occurs each time the 
service instance name is used to find the server’s current 
address and port number. Apple recommends saving 
the service instance name discovered (for instance, “HP 
Printer [928FE5]” of an HP printer), because it’s rela-
tively stable, unlike hostnames, IP addresses, and so on, 
which change frequently. Figure 1 illustrates the process 
of Bonjour service discovery.

In our adversary model, we assume that the attacker 
has already infected a device with malware, in an attempt 
to use the device to collect sensitive information from 
other uninfected devices. Such an adversary could not 
only listen on the communication channel (for example, 
BLE, LAN, or Wi-Fi direct) but also actively send out 
messages to impersonate a legitimate and uninfected 
device. We later demonstrate that such an adversary 
can perform a man-in-the-middle (MITM) attack, 
intercepting data transferred between nearby uninfected 
devices, although the infected device isn’t the right 
data recipient. On the other hand, we don’t consider a 
targeted attack on owners of an uninfected device, in 
which an adversary studies the owners’ behavior and 
background, or even uses social engineering to collect 
information about them.

Understanding Apple ZeroConf
We conducted a security analysis on popular Zero-
Conf Apple services and apps to understand whether 

they’re properly protected and, if not, which technical 
hurdles must be overcome to put protection in place. 
Our study reveals that most Apple ZeroConf systems, 
including Handoff, printer discovery, AirDrop, and 
other high-profile apps, are unguarded, subject to vari-
ous MITM or data-stealing attacks.

Breaking Bluetooth ZeroConf
Apple integrates BLE ZeroConf techniques into its 
frameworks and system services. Many popular apps 
and services have adopted these techniques to improve 
usability. However, our study shows that their service 
discovery and pairing methods are often problematic, 
making many Apple apps and system services vulner-
able to MITM attacks. Here, we discuss two examples.

Insecure pairing. Apple’s Core Bluetooth framework 
lets iOS and Mac apps automatically discover and pair 
with other BLE devices. To ease the development pro-
cess, this framework hides low-level BLE details from 
developers, such as which pairing mode to choose. Its 
default pairing mode (an abstraction of Just Works) is 
also designed to reduce users’ burden, avoiding manual 
input of PINs (like traditional Bluetooth). We found 
that this default mode doesn’t authenticate the client 
and the server. Therefore, apps adopting this frame-
work are typically unprotected. For example, we stud-
ied Scribe, a free app that transfers a copied item from 
Mac to iPhone, which we found was vulnerable to 
MITM attacks.2

Attacking Handoff. Unlike Just Works, the OOB mech-
anism lets ZeroConf devices authenticate each other 
over the BLE channel. A prominent example is Apple 

Figure 1. Bonjour service discovery and host resolution. In the discovery phase, the client broadcasts to request the server’s 
service instance name. In the resolution phase, the client broadcasts again to query the server’s hostname and IP address. 

1. Service request  Anyone provides service of AirDrop?

2. Service response  AirDrop service instance: 9c5e3d2

3. Hostname request Where is AirDrop service instance 9c5e3d2?

4. Hostname response  It is on Je�s-iPhone.local: 8770

5. IP address request  What’s the IP address of Je�s-iPhone.local?

6. IP address response  Its IP address is fe80::xxxx

Discovery

Resolution
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Handoff, a service that lets iOS and OS X synchro-
nize data through BLE without configuration. Pairing 
between the devices happens through OOB: when users 
log in to their iCloud account on their Mac or iPhone, 
the devices’ UUIDs and credentials are exchanged 
through their account to ensure that only authorized 
devices are paired.

The problem is that data synchronization should 
happen only between specific server/client apps, but 
the Apple’s ZeroConf design doesn’t provide authenti-
cation at the app level. As a result, any advertised BLE 
service on the iPhone is completely exposed to any 
BLE-capable app on the Mac. Specifically, we success-
fully exploited the Apple Notification Center Service 
(ANCS) on the iPhone using a sandboxed Mac app. 
iPhone’s ANCS is responsible for managing all notifica-
tions. In the attack, as soon as a Bluetooth connection 
is established between the Mac and the iPhone (which 
happens when the user launches a Handoff process with 
the Handoff setting on), the attack app can discover 
the advertised ANCS service on the phone. By regis-
tering with the ANCS service, the attacker is informed 
whenever a notification appears on the iPhone and then 
acquires the notification from it. In this way, we found 
that the sandboxed app, with only the Bluetooth per-
mission, stole all notifications from the iPhone, includ-
ing SMS, emails, and instant messages. Such a malicious 
app bypassed the vetting of Apple’s Mac App Store and 
got published. A demo is online (sites.google.com/site 
/applezeroconf).

After we reported our findings to Apple, it decided to 
discontinue support for transferring iOS notifications 
to Mac OS in the versions following 10.10.4.

Exploiting File-Sharing Apps
An important support provided by ZeroConf techniques 
is file sharing between devices, such as Macbook and 
iPhone, across an ad hoc network (local Wi-Fi network 
or peer-to-peer Wi-Fi direct connections) when the Inter-
net is unavailable or considered to be less economical for 
the amount of data to be transferred. Apple provides an 
easy-to-use ZeroConf framework for file-sharing apps, 
called Multipeer Connectivity (MC; developer.apple 
.com/reference/multipeerconnectivity), which supports 
automatic service advertisement, discovery, target host 
resolution, and file transfer between devices across Wi-Fi 
and Bluetooth.

Typically, the file receiver device runs an MC adver-
tiser interface to advertise an identifier object peerID 
and other information, which is picked up by the sender 
running another MC browser interface. The problem 
here is that an attack device can also browse and acquire 
the advertised peerID of a victim receiver, and then 
launch a service using exactly the same peerID object, 

to impersonate the receiver to the sender. Furthermore, 
the browser interface on the sender side considers the 
discovered peerID from the attacker as an update to the 
existing peerID from the victim receiver. Consequently, 
it will map this peerID to the attacker’s IP address, 
enabling MITM attacks.

We also found that some file-sharing apps imple-
ment their own ZeroConf capabilities, which become 
necessary when file transfer needs to happen across 
platforms and therefore can’t rely solely on Apple’s ser-
vice. A prominent example is Filedrop, a popular paid 
app designed to quickly share documents among iOS, 
Mac, Android, and Windows devices in a Wi-Fi ad hoc 
network. We found that although the app provides 
cryptographic protection for the file transfer process, it’s 
still vulnerable to MITM attacks, which highlights the 
challenge in protecting an automatic, self-configured 
service in the absence of a preshared secret. Details of 
our attacks on these popular file-sharing apps, including 
Filedrop and the popular instant messaging app Ten-
cent QQ, are explained elsewhere.2

Cracking Bonjour Protection
As we mentioned, Bonjour is a major ZeroConf 
mechanism developed by Apple. It supports auto-
matic service discovery and hostname/IP resolution. 
In the discovery phase, the Bonjour client broadcasts 
requests to discover services of specific types (for 
instance, printing), then the server (for instance, an HP 
printer) responds with a service instance name such as 
“HP Printer [928FE5].” In the resolution step, the cli-
ent resolves the server’s IP address and hostname, for 
instance, LaserJet.local.

A problem for this fully automated mechanism is 
that, again, little protection is in place to ensure that the 
parties involved properly authenticate each other. With 
this weakness, the mechanism is still used in a not-fully-
trusted environment, in the absence of additional secu-
rity measures. Actually, even when people want to 
protect it, it’s difficult to provide authentication on top 
of Bonjour without preconfiguring a shared secret, as we 
found in our research. Here, we elaborate on our find-
ings through two examples of popular Bonjour-capable 
systems: automatic printer discovery and AirDrop.

Misleading printer discovery. Today, all major printer ven-
dors support Bonjour-based automatic printer discov-
ery. More specifically, whenever Mac users search their 
local network for printers, their computer runs Bonjour 
to find printer service instances from which the users can 
choose. A selected printer has its service instance name 
(for example, “HP Printer [928FE5]”) saved on the Mac, 
which enables users to access the printer without going 
through the service discovery step again. On the other 
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hand, each time a user prints through the service instance 
name, the target printer’s hostname and IP address must 
be resolved, using the printer’s service instance name. We 
confirmed that this process can be manipulated to steal 
the document the user intends to print.

The attack happens when a malicious host, such as a 
compromised Mac in the network, broadcasts to publish 
and register a service with an existing printer’s instance 
name, in this case, “HP Printer [928FE5].” Neverthe-
less, each device observes the response and automati-
cally caches it (the mapping between a service type to a 
service instance), and when a conflict is discovered (the 
printer finds that the response carries its own instance 
name), the printer automatically resolves the con-
flict by changing its own instance name—“HP Printer 
[928FE5] (2).” The problem is that the Mac keeping the 
printer’s instance name doesn’t know about that. When 
the Mac uses the printer, the printer won’t respond to 
the request sent out to resolve the printer’s hostname 
and IP because the instance name on the request no 
longer belongs to it. The malicious host, however, will 
reply with its IP. As a result, the user’s document will be 
sent to the malicious host, which can forward the docu-
ment to the original printer, silently serving as a man in 
the middle.

We implemented the attack on a real-world orga-
nizational network. Our approach successfully inter-
cepted documents to be printed out on the target 
printer. Note that this problem isn’t limited to printer 
discovery: most apps and systems using Bonjour don’t 
have protection at all and therefore are equally vulnera-
ble to such an MITM attack. An example is the popular 
PhotoSync app, whose communication between a Mac 
and an iPhone for synchronizing photos is exploited 
by our MITM attack, stealing the photos exchanged 
across the devices.

Hacking AirDrop. A unique feature of Bonjour is that all 
identifiers of a device using the mechanism, including 
its service instance name, hostname, and IP address, are 
generated dynamically and can be changed at any time. 
This feature enables automatic configuration of an ad 
hoc network through which devices easily discover each 
other and establishes communication channels among 
them. However, it also makes device authentication dif-
ficult. A prominent example here is Apple AirDrop, an 
ad hoc service that supports short-range exchange of 
documents between OS X and iOS devices. The ser-
vice is built on top of Bonjour, enhancing the ZeroConf 
mechanism with TLS-based security protection. 

We revealed the AirDrop process through reverse 
engineering and inspecting the system component for 
AirDrop. It turns out that, after the Bonjour discovery 
and resolution steps, the AirDrop sender running on 
iOS or OS X discovers the service instance name, IP, 
and port of another device supporting AirDrop (the 
server). Then, the sender establishes a TLS connection 
with the server to collect its device name (a name for the 
user to recognize the part, such as Jeff ’s iPhone), Apple 
account information, and so forth. This TLS connec-
tion employs Apple’s public-key infrastructure (PKI) 
to encrypt the data transferred between the devices. 
Each device uses a user’s Apple-signed certificate for 
authentication and encryption during the TLS connec-
tion. The name and information transferred during the 
connection are used to build a list of discovered devices 
from which the user chooses one to drop documents. 
After the user chooses the receiver, the documents are 
transferred through the TLS connection, and the server 
confirms the transfer’s success.

With TLS protection, it’s less clear how the sender 
verifies the server’s TLS certificate, which belongs to 
the device owner’s Apple account (Apple ID). Because 

Figure 2. Apple certificate issued to an Apple account. The certificate is bound to a random string prefixed with com.apple.idms.appleid.prd. 
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none of the server device’s identifiers (service instance 
name, device name, IP, and so on) are meant for 
long-term use, they can be changed on the fly and there-
fore can’t be bound to the user’s TLS certificate. Unlike 
a website, whose certificate uses the site’s hostname (for 
instance, apple.com) that needs to be checked during a 
TLS connection, the Apple account of one individual 
doesn’t have identity information that other people can 
easily verify. Actually, as we found out, what’s bound to 
a user’s Apple certificate (used for the TLS connection) 
is a random string prefixed with com.apple.idms.appleid 
.prd (see Figure 2), which is supposed to be related to 
the user’s Apple ID. This random string is hard for other 
users to manually check whether it indeed belongs to 
the intended user.

Fundamentally, linking a human to a certificate is 
complicated, due to the challenge in finding any identi-
fiable information both well-known and unique: a name 
can be duplicate, and date of birth and Social Security 
number have privacy implications—people might not 
want to share them with a party with whom they just 
want to share a file. We found that Apple binds users’ 
Apple ID, denoted by an email address, to the afore-
mentioned random string in their certificates. However, 
Apple’s design isn’t secure in practice; oftentimes, Apple 
users don’t save known people’s Apple IDs into con-
tacts. Indeed, in our measurement study, we checked 
all 1,230 contacts saved on nine individuals’ iPhones. 
It turns out that only 119 contacts (9.7 percent) out of 
1,230 were saved with their Apple IDs.2 

Although it’s highly likely for this identity check 
to fail in practice, Apple still shows to users the list of 
device names, even when the certificates involved can’t 
be bound to any known contacts through the Apple IDs 
(email addresses). Once users choose a device (through 
the device’s name, like Jeff ’s iPhone), their documents 
and photos will be transferred through the AirDrop 
mechanism, even when the validity of the server’s cer-
tificate can’t be fully verified.

Exploiting this weakness, we successfully attacked 
AirDrop. Specifically, the attack happens when the 
attack device sends a response to the AirDrop client 
during the first step of the Bonjour resolution phase, 

to bind the service instance name of the real AirDrop 
server to its own hostname (see Figure 3a). Note that 
this resolution response can be unicast to the victim—
that is, the AirDrop client (the party that initiates the 
AirDrop communication)—to avoid detection by the 
server. After that, the TLS connection initiated by the 
client will go to the attack device. 

Alternatively, an attacker can cheat the AirDrop cli-
ent in the second step of resolution, binding the server’s 
hostname to the attacker’s IP address (see Figure 3b). 
Again, this network packet can be delivered through a 
unicast channel, without exposure to the server. This, 
again, will cause the TLS request from the client to go 
to the attack device. In both cases, the attack device 
impersonates the server to the client, then connects to 
the server to act as a man in the middle. Because users 
have no way to find out whether they’re talking to the 
right person during the process, they might choose the 
wrong device on the list and send their documents and 
photos to the attacker. A demo is online at sites.google 
.com/site/applezeroconf.

Measurement
To find out the scope and magnitude of the security 
weaknesses in ZeroConf systems, we performed a mea-
surement study, analyzing 61 popular Mac and iOS 
apps designed to operate without configurations. Our 
findings demonstrate the issue’s significance: a vast 
majority (88.5 percent) of the apps we analyzed were 
unprotected, even though the environment they work 
in can’t be fully trusted. Examples of such apps and our 
findings are summarized in Table 1.

Protecting Apple ZeroConf
Our security analysis shows that there’s significant mis-
alignment between the usability-oriented design that 
characterizes existing Apple ZeroConf systems and the 
security threats they face in practice.

To better protect the ZeroConf system without 
undermining its usability, we developed a suite of novel 
techniques. We first examine an optimistic approach in 
which the device considers its operating environment 
safe if the necessary condition of an impersonation or 

Table 1. Summary of vulnerable apps.

ZeroConf channel No. vulnerable/sampled Sensitive information leaked App examples

Bluetooth low energy 10/13 Username and password for Mac OS X Near Lock

Multipeer connectivity 24/24 Files and photos transferred, and instant 
message

Bluetooth U, Photo Transfer, 
and AirDates

Bonjour 18/22 Files, directories and clipboard synced, 
documents printed, and instant message

Copybin and Printer Pro Lite

Homegrown 2/2 Remote keyboard input and files transferred Remote Mouse and SHAREit
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MITM attack isn’t satisfied. A more generic solution 
is to leverage Apple’s PKI to authenticate the parties 
involved in ZeroConf operations. Our research shows 
where the existing PKI fails and how to bridge the gap 
and make it work on today’s ZeroConf systems.

Conflict Detection
A key observation from our security analysis of Zero-
Conf systems is that all attempts to impersonate an 
existing device involve hijacking that device’s service 
instance name or hostname. This will cause a con-
flict observable to the party searching for the victim 
(the device being impersonated) when the victim also 
responds to the party’s request and the adversary can’t 
disrupt the communication between the party and the 
victim. Because identity hijacking is a necessary condi-
tion for the impersonation and MITM attacks, and the 
conflict is inevitable assuming no disruption and the 
victim device is always on, we can conclude that a Zero-
Conf network is attack free if no conflict is observed. 
This observation leads to a conflict detection design and 
its implementations on OS X and iOS, which defeats 
these attacks and also fully preserves the existing Zero-
Conf systems’ usability.2

Speaking Out Your Certificate
The conflict detection techniques are completely auto-
matic, fully preserving the zero configuration property of 

existing systems. However, in the presence of a conflict, 
it can’t help users identify the trusted party to connect to. 
In addition, a more fundamental solution against imper-
sonation and MITM attacks should rely on authentica-
tion of the parties involved in the communication. In the 
absence of a shared secret (which needs to be configured 
across multiple devices), apparently the best solution is 
to leverage Apple’s PKI, using each party’s Apple cer-
tificate to establish a secure channel between authen-
ticated peers. However, this treatment turns out to be 
more complicated than it appears: in all the data-sharing 
cases mentioned here, only Handoff can be potentially 
secured by authenticating two apps (across iPhone and 
Mac) with their app signatures; all other cases involve 
users’ Apple account certificate. The challenge here is 
properly verifying one’s ownership of a certificate, which 
hasn’t been addressed by existing techniques.

To link a certificate to a user, we need to attach to 
the certificate some identifiable but nonsensitive user 
information, which must also be well-known to his or 
her contacts. Our idea, named SPYC vouch, is to use 
voice biometrics to tie users’ certificate to their identity, 
assuming that the parties verifying the certificate know 
their voice.2 Specifically, we developed a technique that 
lets users “speak out” their certificates and use the voice 
recording to vouch for the relation between the certif-
icate and their identity. To verify the certificate, users 
must check whether the voice indeed belongs to the 
person they know as well as whether the certificate con-
tent has been correctly spoken. The logic here is that, to 
impersonate someone else, an attacker needs a victim’s 
cooperation to speak out the attacker’s certificate. As a 
result, the attempt to deceive other parties into using an 
attacker’s certificate as the victim’s will fail if those par-
ties know the victim’s voice.

Lessons Learned
We evaluated our protection techniques in two human 
subject studies involving 60 participants and showed 
that speaker identification using SPYC vouch is reliable, 
convenient, and resilient to vouch-forging attacks.2

Our analysis highlights the fundamental security 
challenges underlying ZeroConf techniques: in the 
absence of any preconfigured secrets across differ-
ent devices, it’s difficult to provide proper authentica-
tion. Although the problem is caused by the systems’ 
usability-oriented design, the lack of effective protection 
today comes largely from the inadequate assessment 
of the security risks these systems face. Although their 
designs are meant for operating in a friendly setting, 
ZeroConf systems like AirDrop are actually used in pub-
lic environments, such as airports, where the security 
guarantee becomes hard to assure. An important lesson 
learned from such a misalignment is that the design of a 

Figure 3. Attacks on AirDrop. (a) This attack happens when the attack device 
sends a response to the AirDrop client during the first step of the Bonjour 
resolution phase, binding the service instance name of the real AirDrop server 
to its own hostname. (b) Alternatively, an attacker can cheat the AirDrop client 
in the second step of resolution, binding the server’s hostname to the attacker’s 
IP address. In both cases, the attack device impersonates the server to the client, 
then connects to the server to act as a man in the middle.

(a)

(b)

Hostname response: service instance 9c5e3d2
 is on Attacker-iPhone.local

IP address response: IP of Je�s-iPhone.local is fe80:: bbbb

Client Server
IP address response:

IP of Je�s-iPhone.local is fe80:: aaaa

Client

Attacker

Attacker

Server

Hostname response: service instance 9c5e3d2
 is on Je�s-iPhone.local 
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usability-oriented system must be predicated on careful 
evaluation of the security threats the system faces as well 
as a clear indication of when it can be safely used and 
when it can’t. We strongly believe that guidelines should 
be in place to help developers build such systems with 
proper protection in line with the security risks.

We also highlight the urgent need to develop 
effective authentication technologies for ZeroConf 
systems. Our SPYC design already demonstrates pre-
liminary success. In general, these technologies should 
be intuitive, avoiding complicated configurations a 
ZeroConf system isn’t supposed to have. A follow-up 
effort is expected to find the right balance between 
security and usability.

M ore research is needed to improve our current 
design and implementation of the protection. 

For example, a non-biometric solution to the certificate 
verification problem should be studied. One possibil-
ity is to let Apple users choose their own publishable 
identifiers, such as Facebook profiles, personal websites, 
and so on, and include it as part of their account infor-
mation. During email communication with their con-
tacts, such information can be automatically exchanged 
across different Apple devices. Further effort is needed 
to find out how to make the approach work. 

Acknowledgments
The two lead authors, Xiaolong Bai and Luyi Xing, are listed 
alphabetically.

References
1.	 T. Smith, “Sony Preps ZeroConf-Style Blue-

tooth Tech,” The Register, 18 June 2003; www 
. t h e r e g i s t e r . c o. u k / 2 0 0 3 / 0 6 / 1 8 / s o n y _ p r e p s 
_zeroconfstyle_bluetooth_tech.

2.	 X. Bai et al., “Staying Secure and Unprepared: Under-
standing and Mitigating the Security Risks of Apple Zero-
Conf,” Proc. IEEE Symp. Security and Privacy (SP 16), 
2016; doi:10.1109/SP.2016.45.

Xiaolong Bai is a PhD candidate in the Department of 
Computer Science and Technology at Tsinghua Uni-
versity. His research interests include finding and 
mitigating new vulnerabilities in mobile systems, 
including Android and iOS/OS X. Contact him at 
bxl12@mails.tsinghua.edu.cn.

Luyi Xing is a researcher in the System Security Lab at 
Indiana University Bloomington. His research inter-
ests include finding previously unknown logic and 
architecture problems in modern systems, including 
iOS, OS X, and Android, and high-profile applications 

on them. Xing received a PhD in security informatics 
from Indiana University Bloomington. Contact him 
at luyixing@indiana.edu.

Nan Zhang is a PhD candidate in the System Security 
Lab at Indiana University Bloomington. His research 
interests include system security and mobile secu-
rity, including finding vulnerabilities and designing 
defense techniques on Android, iOS, and Internet of 
Things systems. Contact him at nz3@indiana.edu.

XiaoFeng Wang is a professor in the School of Informat-
ics and Computing at Indiana University Blooming-
ton. His work focuses on cloud and mobile security 
as well as data privacy, particularly the privacy chal-
lenges in large-scale analysis and dissemination of 
human genomic data. Wang received a PhD in elec-
trical and computer engineering from Carnegie Mel-
lon University. He’s a recipient of the 2011 Award for 
Outstanding Research in Privacy Enhancing Technol-
ogies (the PET Award) and the Best Practical Paper 
Award at the 32nd IEEE Symposium on Security and 
Privacy. Contact him at xw7@indiana.edu.

Xiaojing Liao is a PhD candidate in the School of Electri-
cal and Computer Engineering at Georgia Tech and 
a member of the Communications Assurance and 
Performance (CAP) group. Her research interests 
include network security, online crime modeling, and 
cyber-physical system privacy. She’s a student mem-
ber of IEEE. Contact her at xliao@gatech.edu.

Tongxin Li is a PhD candidate in the Department of 
Computer Science at Peking University. His research 
interest is mobile security, including program analy-
sis and vulnerability discovery on Android and iOS. 
Contact him at litongxin@pku.edu.cn.

Shi-Min Hu is a professor in the Department of Com-
puter Science and Technology at Tsinghua University. 
His research interests include system software and 
security, computer graphics, and computer vision. Hu 
received a PhD in mathematics from Zhejiang Univer-
sity. He’s editor in chief of Computational Visual Media 
and on the editorial board of several journals, includ-
ing IEEE Transactions on Visualization and Computer 
Graphics, Computer Aided Design, and Computer & 
Graphics. He’s a Senior Member of IEEE and ACM. 
Contact him at shimin@tsinghua.edu.cn.

  
 


